# Sturdi-Wall Design and Use Guide

for drill set & wet set models



Project Number S021-12

Timber Tech Engineering, Inc E-Mail: tte@timbertecheng.com

April 2023

# **Table of Contents**

| Design Overview                                                                                                                                                                  | Page 3                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Part 1: Standard Sturdi-Wall (Drill Set) Model                                                                                                                                   |                                                                      |
| 1. Sturdi-Wall Design Overview                                                                                                                                                   | Page 3                                                               |
| 2. Sturdi-Wall Descriptions                                                                                                                                                      | Page 3                                                               |
| 3. Steel Bracket Design                                                                                                                                                          | Page 4                                                               |
| 4. Concrete Anchors                                                                                                                                                              | Page 5                                                               |
| 5. Wood Connection                                                                                                                                                               | Page 5                                                               |
| 6. Sturdi-Wall Bracket Design Chart                                                                                                                                              | Page 6                                                               |
| Part 2: Sturdi-Wall Plus (Wet Set) Model                                                                                                                                         |                                                                      |
| 7 G 1: W 11 D1 (W + G +) D : O :                                                                                                                                                 |                                                                      |
| 7. Sturdi-Wall Plus (Wet Set) Design Overview                                                                                                                                    | Page 7                                                               |
| 8. Sturdi-Wall Plus (Wet Set) Design Overview                                                                                                                                    | _                                                                    |
| <ul><li>8. Sturdi-Wall Plus Descriptions.</li><li>9. Steel Bracket Design.</li></ul>                                                                                             | Page 7<br>Page 8                                                     |
| <ul><li>8. Sturdi-Wall Plus Descriptions.</li><li>9. Steel Bracket Design.</li><li>10. Rebar Connection.</li></ul>                                                               | Page 7<br>Page 8<br>Page 9                                           |
| <ul><li>8. Sturdi-Wall Plus Descriptions.</li><li>9. Steel Bracket Design.</li><li>10. Rebar Connection.</li><li>11. Wood Connection.</li></ul>                                  | Page 7 Page 8 Page 9 Page 9                                          |
| <ul><li>8. Sturdi-Wall Plus Descriptions.</li><li>9. Steel Bracket Design.</li><li>10. Rebar Connection.</li></ul>                                                               | Page 7 Page 8 Page 9 Page 9                                          |
| <ul><li>8. Sturdi-Wall Plus Descriptions.</li><li>9. Steel Bracket Design.</li><li>10. Rebar Connection.</li><li>11. Wood Connection.</li></ul>                                  | Page 7 Page 8 Page 9 Page 9 Page 9                                   |
| <ol> <li>Sturdi-Wall Plus Descriptions.</li> <li>Steel Bracket Design</li> <li>Rebar Connection.</li> <li>Wood Connection.</li> <li>Recommended Installation Details.</li> </ol> | Page 7<br>Page 8<br>Page 9<br>Page 9<br>Page 11                      |
| 8. Sturdi-Wall Plus Descriptions 9. Steel Bracket Design                                                                                                                         | Page 7<br>Page 8<br>Page 9<br>Page 9<br>Page 9<br>Page 11<br>Page 12 |



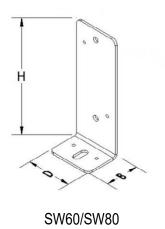


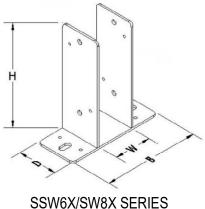


#### **Design Overview**

This guide is intended to be used by post-frame building engineers and designers as a companion document to the ESR-4239 report by *International Code Council Evaluation Services (ICC ES)*. The structural analysis described in this guide is based on the load and resistance factor (LRFD) and the allowable strength design (ASD) methodologies in accordance with 2018 International Building Code (IBC). This Design and Use Guide covers properties and design procedures for the Sturdi-Wall and Sturdi-Wall Plus steel brackets.

**Important Note:** The building must be designed to resist lateral loads through diaphragm action or other bracing means. SW and SWP brackets are not an alternative to this requirement. The SW and SWP brackets are not recommended for columns that do not have a lateral restraint at the top.


# Part 1: Standard Sturdi-Wall (Drill Set) Model


# 1. Sturdi-Wall Design Overview

The standard Sturdi-Wall anchor brackets are designed to connect wood columns to a concrete foundation in a typical post-frame building application using a drill set installation method. This section contains drawings and descriptions for each of the Sturdi-Wall models, charts showing shear and uplift strength, descriptions of several methods for attachment to concrete, and discussion of design assumptions. See Part 2 of this manual for information on a wet set installation.

# 2. Sturdi-Wall Descriptions

Dimensions for the, SW6C, SW60, SW80, SW46, SW55, SW63, SW64, SW65, SW66, SW83, SW84, SW85 and SW88 are given in Figure 2.1. The brackets are constructed with 1/4" ASTM A1018, SS designation Grade 40 steel and 1/4" fillet welds of E70XX electrodes. Each assembly has a proprietary powder coat finish. The SW46 is to be used with a 4x6 wood post, SW55 with a 5x5 wood post, SW66 with a 6x6 wood post, SW88 with 8x8 wood post, SW63 with a 3-ply 2x6 laminated column, SW64 with a 4-ply 2x6 laminated column, SW65 with a 5-ply 2x6 laminated column, SW83 with a 3ply 2x8 laminated column, SW84 with a 4-ply 2x8 laminated column, and SW85 with a 5-ply 2x8 laminated column. Laminated column may be mechanically laminated using nails, screws or bolts, or glue laminated (glulam). The pocket width for the mechanically laminated columns is different than one for glulam columns. Sturdi-Wall models for use with glulam columns are identified with a "GL" at the end of the name. The inside dimension of the brackets allows for an \( \frac{1}{8} \)" total tolerance between the steel bracket and wood column. When 1/8" maximum tolerance is not achieved, appropriately sized wood shims must be added on one or both sides of the pocket to provide a snug fit. The shim should be APA B-C Exterior plywood (or equivalent), no more than 1/4" thick, and have the same dimensions as the vertical leg of the bracket. The shim should be fastened to the column with 2 beads of Builders Choice 490 construction adhesive by Liquid Nails (or equal) and (6) 0.113"x2.375" nails. Brackets SW60 and SW80 shall be used as pairs and fastened using the same connectors as the fully assembled brackets. Corner columns require two SW60C brackets located on adjacent faces of the column (not opposite faces).







X/SW8X SERIES SW6X/SW8X

|      | Туре                                       | W<br>(Standard)                 | W<br>(Glulam)                    | В                                | D  | н   | Anchor Center                    |
|------|--------------------------------------------|---------------------------------|----------------------------------|----------------------------------|----|-----|----------------------------------|
| SW6C | 3, 4 or 5 ply 2x6 or 2x8,<br>4x6, 6x6, 8x8 | n/a                             | n/a                              | 3 <sup>1</sup> / <sub>2</sub> "  | 4" | 13" | n/a                              |
| SW60 | 3, 4 or 5 ply 2x6 or 2x8,<br>4x6, 6x6, 8x8 | n/a                             | n/a                              | 3 <sup>1</sup> / <sub>2</sub> "  | 5″ | 13" | n/a                              |
| SW80 | 3, 4 or 5 ply 2x6 or 2x8,<br>4x6, 6x6, 8x8 | n/a                             | n/a                              | 3 <sup>1</sup> / <sub>2</sub> "  | 7" | 18" | n/a                              |
| SW46 | 4" X 6" Post                               | 3 <sup>5</sup> / <sub>8</sub> " | n/a                              | 12 <sup>1</sup> / <sub>8</sub> " | 5″ | 13″ | 9 ³/ <sub>8</sub> "              |
| SW55 | 5" X 5" Post                               | 4 <sup>5</sup> / <sub>8</sub> " | n/a                              | 12 <sup>1</sup> / <sub>8</sub> " | 5″ | 13″ | 9 ³/ <sub>8</sub> "              |
| SW66 | 6" X 6" Post                               | 5 <sup>5</sup> /8"              | n/a                              | 13 <sup>5</sup> / <sub>8</sub> " | 5″ | 13″ | 10 <sup>7</sup> /8"              |
| SW63 | 3 PLY 6" Lam Col                           | 4 <sup>5</sup> / <sub>8</sub> " | 4 <sup>3</sup> / <sub>16</sub> " | 12 <sup>1</sup> / <sub>8</sub> " | 5″ | 13" | 9 ³/ <sub>8</sub> "              |
| SW64 | 4 PLY 6" Lam Col                           | 6 <sup>1</sup> / <sub>8</sub> " | 5 <sup>9</sup> / <sub>16</sub> " | 13 <sup>5</sup> / <sub>8</sub> " | 5″ | 13″ | 10 <sup>7</sup> /8"              |
| SW65 | 5 PLY 6" Lam Col                           | 7 <sup>5</sup> / <sub>8</sub> " | 7 <sup>5</sup> / <sub>16</sub> " | 15 <sup>1</sup> / <sub>8</sub> " | 5″ | 13" | 12 <sup>3</sup> / <sub>8</sub> " |
| SW83 | 3 PLY 8" Lam Col                           | 4 <sup>5</sup> / <sub>8</sub> " | 4 <sup>3</sup> / <sub>16</sub> " | 12 <sup>1</sup> / <sub>8</sub> " | 7" | 18" | 9 3/8"                           |
| SW84 | 4 PLY 8" Lam Col                           | 6 <sup>1</sup> / <sub>8</sub> " | 5 <sup>9</sup> / <sub>16</sub> " | 13 <sup>5</sup> /8"              | 7" | 18" | 10 <sup>7</sup> / <sub>8</sub> " |
| SW85 | 5 PLY 8" Lam Col                           | 7 <sup>5</sup> /8"              | 7 <sup>5</sup> / <sub>16</sub> " | 15 <sup>1</sup> /8"              | 7" | 18" | 12 <sup>3</sup> / <sub>8</sub> " |
| SW88 | 8" X 8" Post                               | 8 <sup>1</sup> / <sub>8</sub> " | n/a                              | 15 <sup>1</sup> /8"              | 7" | 18" | 12 <sup>3</sup> / <sub>8</sub> " |

Figure 2.1: Sturdi-Wall Descriptions

# 3. Steel Bracket Design

The forces applied from the building columns to Sturdi-Wall brackets are a vertical uplift force, a downward gravity force, and a horizontal shear force perpendicular to the plane of the wall. The wood columns need direct bearing on the bottom to transfer axial loads directly into the concrete foundation. The Sturdi-Wall brackets are assumed to have no moment capacity. The building must be designed to resist lateral loads through diaphragm action or other bracing means. All mechanical fasteners are to be installed as per the manufacturer's recommendations and this design guide. The brackets consist of ½" ASTM A1018, SS designation grade 40 steel with ½" diameter holes for the bolts in the vertical

leg, and <sup>3</sup>/<sub>4</sub>" x 1 <sup>1</sup>/<sub>2</sub>" slotted holes for concrete anchors in the base. The brackets also have holes for screws near the bolts in the vertical legs.

#### 4. Concrete Anchors

SW brackets may be attached to concrete with anchor "L" bolts, epoxy anchors and screw anchors.

# 4.1 Anchor "L" Bolts

The anchor "L" bolts are to be typical ASTM F1554 36 grade or ASTM A36 right angle bend cast in place anchor bolts. These are set in wet concrete and must be placed within the tolerance of the slotted hole in the bottom of the bracket.

# 4.2 Epoxy Anchors

Epoxy or adhesive anchors must be installed in a properly sized and prepared hole per the manufacturer's specifications and within a set temperature range in order to be effective.

# 4.3 Screw Anchors

Screw anchors have a hex head and a threaded shaft which can be installed with an impact wrench or conventional hand socket. There are no expansion forces transferred to the concrete base material so they can be installed closer to the edge than traditional expansion anchors.

# 4.4 Expansion Anchors – Not recommended for SW application

**Important Note:** The prying forces in the base plate of the SW bracket increase the uplift forces on the anchors by approximately 100% (a factor of 2). For example, if the net uplift force at the base of the column is 1000 lb, the uplift force on the two anchors is then approximately 2000 lb, or 1000 lb at each anchor.

# 5. Wood Connection

The steel-to-wood connection is made with (2) ½" diameter SAE J429 Grade 5 bolts in double shear and 1/4" x 3" strong drive screws (SDS) by Simpson Strong Tie or equal PC-approved (Perma-Column approved) screws in single shear installed from each side. The screws have a one-inch long 0.242-inch to 0.249-inch diameter unthreaded shank before the root diameter is reduced at the threads. The highest concentration of stresses is located near the face of the wood column along the unthreaded segment of the screw. The stresses dissipate significantly at the end of the unthreaded shank segment (beginning of threaded segment). When compared to standard wood screws, the SDS and other PCapproved structural screws have a significantly greater shear strength values in a steel-to-wood application. This difference in strength is attributed primarily to two factors: SDS and other PCapproved screws have a high specified bending yield strength and a long large-diameter unthreaded shank. Typically, one screw is installed from each side of the bracket at each bolt except the SW8 series has 2 screws on each side at each bolt. Screws help prevent stress concentration around the bolt which may otherwise cause splitting of the wood members. The wood-to-steel connection was analyzed per the National Design Specification for Wood Construction 2018 edition by the American Wood Council using Southern Yellow Pine wood columns (Specific Gravity = 0.55). Wet service reductions have not been applied since the wood portion is not in contact with the soil or concrete and the column is assumed to be used in an enclosed building. If the brackets are to be used in an environment where the moisture content of the wood in service will exceed 19% for an extended period of time, pressure treated wood and galvanized or stainless steel bolts should be used, and a wet service factor should be applied to the shear and uplift values in Tables 6.1 and 6.2. In addition, a barrier membrane should be applied between the pressure treated wood post and the Sturdi-Wall bracket to provide corrosion protection. Consult your local supplier for a suitable barrier. The design of the wood columns, the concrete foundation and the lateral force resisting system of the building is the responsibility of the building designer.

# 6. Sturdi-Wall Bracket Design Chart

Tables 6.1 and 6.2 shows the shear and uplift strength of the steel brackets, steel-to-wood connection, and steel-to-concrete connection (anchors). The shear and uplift strength values for the steel-to-wood connection have been adjusted by the Load Duration Factor,  $C_D$ , of 1.6 (ASD) and the Time Effect Factor,  $\lambda$ , of 1.0 (LRFD) consistent with short duration loads. No further increases are permitted. The steel-to-concrete strength values are for concrete with a minimum compressive strength,  $f'_c$ , of 3 ksi. Anchor calculations are for 1/2-inch  $\emptyset$  cast-in-place anchors or screw anchors with the Nominal Tensile Strength,  $F_{nt}$ , of 45 ksi, the Nominal Shear Strength,  $F_{nv}$ , of 24 ksi, and a minimum of 5-3/4" embedment into the concrete (heff = 4.3 inches). The steel-to-concrete values include the tensile and shear strength of the anchors (including prying action, see the boxed Important Note below), and the concrete breakout strength for wall thicknesses of 8 inches, 10 inches and 12 inches with anchors centered in the wall. The steel-to-concrete values in Tables 6.1 and 6.2 are intended only for demonstrational purposes. The anchor and concrete calculations are the responsibility of the building designer.

**Important Note:** The prying forces in the base plate of the SW bracket increase the uplift forces on the anchors by approximately 100% (a factor of 2). For example, if the net uplift force at the base of the column is 1000 lb, the uplift force on the two anchors is then approximately 2000 lb, or 1000 lb at each anchor.

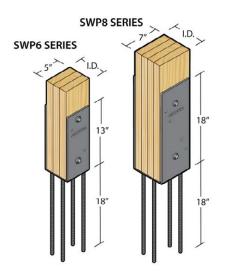
| Table 6.1,  | Table 6.1, ASD: Allowable Shear and Uplift Strength for Sturdi-Wall Anchor Brackets |                |               |                |               |                       |               |                        |                                     |                |
|-------------|-------------------------------------------------------------------------------------|----------------|---------------|----------------|---------------|-----------------------|---------------|------------------------|-------------------------------------|----------------|
|             | Stren                                                                               | ath of         | Steel-to      | booW-c         |               | Ste                   | el-to-Cond    | rete Conne             | ction                               |                |
|             |                                                                                     | Bracket        | Conne         |                |               | hor in 8"<br>ete Wall | _             | hor in 10"<br>ete Wall | 1/2" Anchor in 12"<br>Concrete Wall |                |
| Model       | Shear<br>(lb)                                                                       | Uplift<br>(lb) | Shear<br>(lb) | Uplift<br>(lb) | Shear<br>(lb) | Uplift<br>(lb)        | Shear<br>(lb) | Uplift<br>(lb)         | Shear<br>(lb)                       | Uplift<br>(lb) |
| SW46        | 36100                                                                               | 2970           | 2100          | 6050           | 2600          | 1770                  | 3310          | 2210                   | 3310                                | 2650           |
| SW55        | 36100                                                                               | 3330           | 2100          | 6050           | 2600          | 1870                  | 3310          | 2330                   | 3310                                | 2800           |
| SW63        | 36100                                                                               | 3680           | 2100          | 6050           | 2600          | 1960                  | 3310          | 2450                   | 3310                                | 2940           |
| SW64        | 36100                                                                               | 3620           | 2100          | 6050           | 2780          | 2080                  | 3520          | 2600                   | 3520                                | 3120           |
| SW65        | 36100                                                                               | 3440           | 2100          | 6050           | 2920          | 2130                  | 3720          | 2700                   | 3720                                | 3240           |
| SW66        | 36100                                                                               | 3640           | 2100          | 6050           | 2780          | 2080                  | 3520          | 2600                   | 3520                                | 3120           |
| SW83        | 52600                                                                               | 4980           | 3030          | 8490           | 2600          | 1930                  | 3310          | 2410                   | 3310                                | 2890           |
| SW84        | 52600                                                                               | 4880           | 3030          | 8490           | 2780          | 2040                  | 3520          | 2550                   | 3520                                | 3060           |
| SW85        | 52600                                                                               | 4820           | 3030          | 8490           | 2920          | 2130                  | 3720          | 2700                   | 3720                                | 3240           |
| SW88        | 52600                                                                               | 4800           | 3030          | 8490           | 2920          | 2130                  | 3790          | 2750                   | 3790                                | 3300           |
| SW60 (pair) | 1310                                                                                | 3400           | 2100          | 6050           | 2600          | 1890                  | 2600          | 2360                   | 2600                                | 2840           |
| SW80 (pair) | 2210                                                                                | 4500           | 3030          | 8490           | 2600          | 1840                  | 3310          | 2300                   | 3310                                | 2760           |
| SW6C (pair) | 720                                                                                 | 1300           | 1120          | 7310           | 1460          | 1070                  | 1860          | 1340                   | 1460                                | 1610           |

| Table 6.2   | Table 6.2, LRFD: Design Shear and Uplift Strength for Sturdi-Wall Anchor Brackets |                |               |                |                              |                      |               |                        |               |                        |
|-------------|-----------------------------------------------------------------------------------|----------------|---------------|----------------|------------------------------|----------------------|---------------|------------------------|---------------|------------------------|
|             | Stren                                                                             | gth of         | Steel-to      | o-Wood         | Steel-to-Concrete Connection |                      |               |                        |               |                        |
|             |                                                                                   | Bracket        |               | ection         | _                            | hor in 8"<br>te Wall |               | hor in 10"<br>ete Wall | _             | nor in 12"<br>ete Wall |
| Model       | Shear<br>(Ib)                                                                     | Uplift<br>(lb) | Shear<br>(lb) | Uplift<br>(lb) | Shear<br>(lb)                | Uplift<br>(lb)       | Shear<br>(lb) | Uplift<br>(lb)         | Shear<br>(lb) | Uplift<br>(lb)         |
| SW46        | 54200                                                                             | 4460           | 2830          | 8160           | 4160                         | 2830                 | 5300          | 3540                   | 3540          | 4240                   |
| SW55        | 54200                                                                             | 5010           | 2830          | 8160           | 4160                         | 2990                 | 5300          | 3730                   | 3730          | 4480                   |
| SW63        | 54200                                                                             | 5530           | 2830          | 8160           | 4160                         | 3140                 | 5300          | 3920                   | 3920          | 4740                   |
| SW64        | 54200                                                                             | 5450           | 2830          | 8160           | 4450                         | 3330                 | 5630          | 4160                   | 4160          | 4990                   |
| SW65        | 54200                                                                             | 5170           | 2830          | 8160           | 4670                         | 3400                 | 5960          | 4310                   | 4310          | 5180                   |
| SW66        | 54200                                                                             | 5470           | 2830          | 8160           | 4450                         | 3330                 | 5630          | 4170                   | 4170          | 5000                   |
| SW83        | 79000                                                                             | 7480           | 4080          | 11450          | 4160                         | 3090                 | 5300          | 3860                   | 3860          | 4630                   |
| SW84        | 79000                                                                             | 7330           | 4080          | 11450          | 4450                         | 3270                 | 5630          | 4080                   | 4080          | 4900                   |
| SW85        | 79000                                                                             | 7240           | 4080          | 11450          | 4670                         | 3400                 | 5960          | 4310                   | 4310          | 5180                   |
| SW88        | 79000                                                                             | 7210           | 4080          | 11450          | 4670                         | 3400                 | 6060          | 4400                   | 4400          | 5280                   |
| SW60 (pair) | 1970                                                                              | 5110           | 2830          | 8160           | 4160                         | 3020                 | 5300          | 3780                   | 3780          | 4540                   |
| SW80 (pair) | 3320                                                                              | 6760           | 4080          | 11450          | 4160                         | 2940                 | 5300          | 3680                   | 3680          | 4410                   |
| SW6C (pair) | 1080                                                                              | 1950           | 1510          | 9850           | 2340                         | 1720                 | 2980          | 2140                   | 2140          | 2570                   |

#### Table 6.1 and 6.2 Footnotes:

- 1. This chart is for Sturdi-Wall brackets for use in post-frame building applications to connect wood columns to a concrete wall or foundation.
- Loads applied to the brackets from the columns are a vertical uplift force and a horizontal shear force
- Steel-to-Wood connections were calculated as per the NDS 2018 using columns with Specific Gravity of 0.55, dry service conditions
- 4. The allowable loads in concrete have been divided by 1.6 to convert from LRFD to ASD.
- 5. Concrete design numbers are based on a minimum concrete compressive strength of 3000 psi
- 6. Bolts are 1/2" diameter SAE J429 Grade 5 with hex nuts
- 7. Screws are 1/4" diameter x 3" Strong Drive Screws (SDS) by Simpson Strong Tie, or alternative screws approved by Perma-Column
- 8. Wood column above the bracket, anchors and concrete foundation below the bracket to be designed by others
- 9. Install all fasteners as per the manufacturer's specifications and these notes
- 10. Final bracket design should include a complete building analysis performed by a design professional

# Part 2: Sturdi-Wall Plus (Wet Set) Models


# 7. Sturdi-Wall Plus Design Overview

The Sturdi-Wall Plus anchor brackets are designed to connect wood columns to a concrete foundation in a typical post frame building application using a wet set installation method. This guide contains drawings and descriptions for each of the Sturdi-Wall Plus models, a chart showing shear, uplift, and bending (moment) strength for each Sturdi-Wall Plus bracket, description of method for attachment to concrete, and discussion of design assumptions. Drill set installation is covered in Part 1 of this guide.

# 8. Sturdi-Wall Plus Descriptions

Dimensions for the SWP46, SWP63, SWP64, SWP66, SWP83, SWP84, SWP85 and SWP88 are given in Figure 8.1. The brackets are constructed with ¼" ASTM A1018, SS designation Grade 40

steel and ¼" fillet welds of E70XX electrodes. Each assembled bracket has a proprietary powder coat finish. The SWP46 is to be used with a 4x6 wood post, SWP66 with a 6x6 wood post, SWP88 with an 8x8 post, SWP63 with a 3-ply 2x6 laminated column, SWP64 with a 4-ply 2x6 laminated column, SWP83 with a 3-ply 2x8 laminated column, SWP84 with a 4-ply 2x8 laminated column, and SWP85 with a 5-ply 2x8 laminated column. Laminated column may be mechanically laminated using nails, screws or bolts, or glue laminated (glulam). The pocket width for the mechanically laminated columns is different than one for glulam columns. *Sturdi-Wall Plus* models for use with glulam columns are identified with a "GL" at the end of the name. The inside dimension of the brackets allows for an ½" total tolerance between the steel bracket and wood column. When 1/8" maximum tolerance is not achieved, appropriately sized wood shims must be added on one or both sides of the pocket to provide a snug fit. The shim should be APA B-C Exterior plywood (or equivalent), no more than ¼" thick, and have the same dimensions as the vertical leg of the bracket. The shim should be fastened to the column with 2 beads of Builders Choice 490 construction adhesive by Liquid Nails (or equal) and (6) 0.113"x2.375" nails.



|       | Туре             | I.D.<br>Standard                | I.D.<br>Glulam                    |
|-------|------------------|---------------------------------|-----------------------------------|
| SWP46 | 4" X 6" Post     | 3 <sup>5</sup> / <sub>8</sub> " | n/a                               |
| SWP63 | 3 PLY 6" Lam Col | 4 <sup>5</sup> / <sub>8</sub> " | 4 <sup>3</sup> / <sub>16</sub> "  |
| SWP64 | 4 PLY 6" Lam Col | 6 <sup>1</sup> / <sub>8</sub> " | 5 <sup>9</sup> / <sub>16</sub> "  |
| SWP66 | 6" X 6" Post     | 5 <sup>5</sup> /8"              | n/a                               |
| SWP83 | 3 PLY 8" Lam Col | 4 <sup>5</sup> / <sub>8</sub> " | 4 <sup>3</sup> / <sub>16</sub> "  |
| SWP84 | 4 PLY 8" Lam Col | 6 <sup>1</sup> / <sub>8</sub> " | 5 <sup>9</sup> / <sub>16</sub> "  |
| SWP85 | 5 PLY 8" Lam Col | 7 <sup>5</sup> /8"              | 6 <sup>15</sup> / <sub>16</sub> " |
| SWP88 | 8"x 8" Post      | 8 <sup>1</sup> / <sub>8</sub> " | n/a                               |

Figure 8.1: Sturdi-Wall Plus Descriptions

# 9. Steel Bracket Design

The forces applied from the building columns to Sturdi-Wall Plus brackets are a vertical uplift force, a downward gravity force, a horizontal shear force, and a moment about the strong axis of the column. The wood columns must have a direct bearing on the bottom to transfer axial loads directly into the concrete wall or foundation. Unlike the Standard Sturdi-Wall brackets, the Sturdi-Wall Plus brackets are a moment resisting brackets with defined rotational stiffness (semi-rigid) and moment strength. All mechanical fasteners are to be installed as per the manufacturer's recommendations and this design guide. The brackets consist of ¼" A1018, SS designation Grade 40 steel with 18-inch long A706 weldable reinforcing bars welded to the base of the bracket, #4 (½") for the SWP 4 and 6 Series brackets and #5 (5%") for the SWP 8 Series brackets and 5%" diameter holes for the ½" diameter bolts in the vertical legs. The brackets also have holes for screws near the bolts in the vertical legs. The building must be designed to resist lateral loads through diaphragm action or other bracing means.

# 10. Rebar Connection

The base of the u-shaped steel bracket is reinforced with an additional flat 1/4" thick steel stiffener plate located "inside" the pocket. The bottom of the u-shaped steel bracket has four holes to accept the rebar. Four weldable ASTM A706 grade 60, 18-inch long deformed rebars are welded to the steel stiffener plate inside the bracket and to the u-shaped bracket such that the weld material fills the gap between the rebar and the edges of the holes. The rebar is cast in place by being set in wet concrete shortly after a wall or foundation pour. To achieve tabulated values, a minimum of 2-inch concrete cover is required. Concrete cover is defined as the distance from the nearest edge of the concrete to the side of the rebar. The cast-in-place rebar allows for bending moments to transfer from the steel bracket into the concrete wall or foundation.

# 11. Wood Connection

The steel-to-wood connection is made with (2) ½" diameter SAE J429 Grade 5 bolts in double shear and 1/4" x 3" strong drive screws (SDS) by Simpson Strong Tie or equal PC-approved (Perma-Column approved) screws in single shear installed from each side. The screws have a one-inch long 0.242-inch to 0.249-inch diameter unthreaded shank before the root diameter is reduced at the threads. The highest concentration of stresses is located near the face of the wood column along the unthreaded segment of the screw. The stresses dissipate significantly at the end of the unthreaded shank segment (beginning of threaded segment). When compared to standard wood screws, the SDS and other PCapproved structural screws have a significantly greater shear strength values in a steel-to-wood application. This difference in strength is attributed primarily to two factors: SDS and other PCapproved screws have a high specified bending yield strength and a long large-diameter unthreaded shank. Typically, one screw is installed from each side of the bracket at each bolt except the SW8 series has 2 screws on each side at each bolt. Screws help prevent stress concentration around the bolt which may otherwise cause splitting of the wood members. The wood-to-steel connection was analyzed per the National Design Specification for Wood Construction 2018 edition by the American Wood Council using Southern Yellow Pine wood columns (Specific Gravity = 0.55). Wet service reductions have not been applied since the wood portion is not in contact with the soil or concrete and the column is assumed to be used in an enclosed building. If the brackets are to be used in an environment where the moisture content of the wood in service will exceed 19% for an extended period of time, pressure treated wood and galvanized or stainless steel bolts should be used, and a wet service factor should be applied to the shear, moment, and uplift values in Table 15.1. In addition, a barrier membrane should be applied between the pressure treated wood post and the Sturdi-Wall bracket to provide corrosion protection. Consult your local supplier for a suitable barrier. The design of the wood columns, the concrete foundation and the lateral force resisting system of the building is the responsibility of the building designer.

#### 12. Recommended Installation Details

ACI 318-14, Section 20.6 contains concrete cover requirements for protection of reinforcement against moisture from weather and earth. For cast-in-place concrete, the minimum cover is 3" when cast against and permanently exposed to earth, and 1-1/2" when exposed to earth and weather. Since foundation walls and piers into which the Sturdi-Wall Plus brackets are placed are normally formed, not cast against earth, they fall into the second category. However, 1-1/5-inch concrete cover may not be thick enough to ensure full development of rebar in tension; a minimum concrete cover of 2 inches

is recommended for SWP brackets. The values in Tables 15.1 and 15.2 are based on a concrete cover of 2 inches.

Figures 12.1 and 12.2 illustrate the recommended installation of an SWP 4/6 Series and an SWP 8 Series bracket, respectively. The concrete foundation shown may be a wall or a pier. An 8-inch concrete thickness is shown for the SWP 4/6 Series and a 10-inch thickness is shown for the SWP 8 Series brackets. The clear cover to the reinforcing bars of the SWP brackets for both cases is greater than 2 inches - adequate for concrete walls and piers poured into forms and exposed to earth or weather. Figure 12.3 applies to a bracket installed close to the edge of an opening in a foundation wall. This detail may also apply to a bracket installed on a concrete pier.

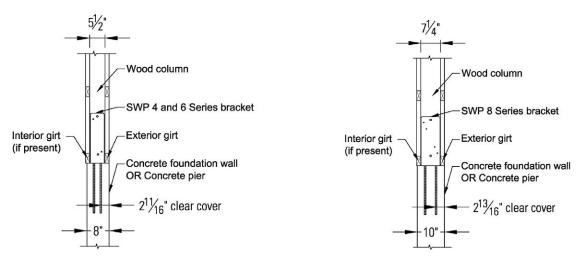



Figure 12.1: Recommended Installation For SWP 4 and 6 Series Brackets

Figure 12.2: Recommended Installation For SWP 8 Series Brackets



Figure 12.3: SWP Door Edge Detail

When Sturdi-Wall Plus brackets are placed in wet concrete, care shall be taken to ensure that the concrete is not so wet that the brackets sink below the base plate and not so dry that the concrete will not flow around and adhere to the rebar. Ideally, the consistency of the concrete should be such that the rebar can be easily inserted in the concrete and the base of the steel bracket can float on the surface

of the concrete. The entire length of rebar shall be embedded in the concrete such that the bottom of the steel base plate bears on the surface of the concrete.

# 13. Modeling

In the structural computer program, the joint between the concrete foundation and the wood column, representing the SWP bracket, should be modeled as a "semi-rigid joint" using rotational stiffness values in Table 15.1. If the designer's computer program does not have the capability to model semi-rigid joints directly, the designer may create a *joint member* in between the concrete base and the wood column with carefully selected structural and geometrical properties to mimic the behavior of the semi-rigid joint using equation 13-1. Table 13.1 shows the recommended properties for the vertical joint member that is 1-inch long and is made of steel (E=29,000,000 psi). For example, a semi-rigid joint between a 3-ply 2x6 wood column and a concrete foundation using SWP63 bracket can be modeled as a 1-inch long (tall), 0.942-inch wide and 0.942-inch deep vertical member, made of steel material (for ex. ASTM 1018 or A36), rigidly connected to the concrete base below and the wood column above (Figure 13.1). The joint in this example will produce the same results as the joint that is directly assigned a rotational stiffness value of 1900 in-k/rad in Table 15.1.

$$EI = (M/\theta)_e L$$
 (Eq. 13-1)

Where,

E = elastic modulus of the *joint member* 

I = moment of inertia of the *joint member's* profile

L = length of the joint member

 $(M/\theta)_e$  = effective rotational rigidity of the *joint member* 

 $= [1/(M/\theta)_b + 1/(M/\theta)_w]^{-1}$ 

 $(M/\theta)_b$  = rotational stiffness of the steel bracket (Table 15.1)

 $(M/\theta)_w$  = rotational rigidity of the wood segment that is being replaced by *joint member* 

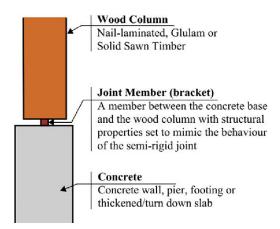



Figure 13.1 *Joint Member* between concrete foundation and wood column

| <b>Table 13.1:</b> | Recommended | l Joint Mem | ber Properties |
|--------------------|-------------|-------------|----------------|
|--------------------|-------------|-------------|----------------|

| Series | Width<br>(in) | Depth<br>(in) | Length (height) (in) | E<br>(psi) |
|--------|---------------|---------------|----------------------|------------|
| SWP46  | 0.936         | 0.936         | 1.0                  | 29,000,000 |
| SWP63  | 0.937         | 0.937         | 1.0                  | 29,000,000 |
| SWP64  | 1.009         | 1.009         | 1.0                  | 29,000,000 |
| SWP66  | 0.944         | 0.944         | 1.0                  | 29,000,000 |
| SWP83  | 1.175         | 1.175         | 1.0                  | 29,000,000 |
| SWP84  | 1.164         | 1.164         | 1.0                  | 29,000,000 |
| SWP85  | 1.162         | 1.162         | 1.0                  | 29,000,000 |
| SWP88  | 1.159         | 1.159         | 1.0                  | 29,000,000 |

IMPORTANT NOTE: SWP brackets must be modeled using the specified rotational stiffness. Assuming a joint with zero stiffness or a fully rigid joint is not an acceptable alternative.

# 14. Foundation Design

A concrete wall or foundation must be designed in accordance with the established engineering standards to resist the shear, uplift, bending (moment) and downward forces that are transferred from the column. The foundation must have sufficient rotational rigidity to ensure that the inflection point, a point of zero moment, is located above the SWP bracket – not below (Figure 14.1). The latter requirement ensures that shear and bending forces may be applied to the bracket simultaneously without any reduction to the maximum shear and maximum moment strength reported in Table 15.1. The maximum shear and moment strength values in Table 15.1 are not applicable to load cases where this requirement is not satisfied. This subject is explained further in Figure 14.2 and the discussion of load cases that follows.

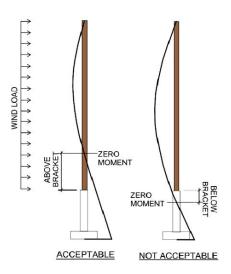




Figure 14.1



**Figure 14.2** 

In Figure 14.2, Load Case 1 defines the maximum shear strength,  $V_{max}$ , of the column-to-bracket connection in absence of moment forces. Load Case 2 defines the maximum moment strength,  $M_{max}$ , of the column-to-bracket connection in absence of shear forces. Load Case 3 is a combination of Load Case 1 and Load Case 2 where a maximum moment and a maximum shear force are applied to the bracket simultaneously. In all load cases, the maximum shear strength,  $V_{max}$ , and the maximum moment strength,  $M_{max}$ , are defined such that the magnitude of the resulting forces  $F_T$  (force at the top fastener group) and  $F_B$  (force at the bottom fastener group) does not exceed the lateral strength of each respective fastener group.

The resulting forces  $F_T$  and  $F_B$  in Load Case 1 are acting in opposite directions from the resulting forces  $F_T$  and  $F_B$  in Load Case 2. This means that adding a shear load to the connection that is loaded with the maximum moment force will result in reduction in forces  $F_T$  and  $F_B$ . Similarly, adding a moment force to the connection that is loaded with the maximum shear force will result in reduction in forces  $F_T$  and  $F_B$ . Therefore, when the inflection point (point of zero moment) is located above the SWP bracket,  $V_{max}$  and  $M_{max}$  loading may be applied to the bracket simultaneously without any reduction in strength. Load Case 4 represents the condition in which the moment reversal occurs below the bracket. In this load condition,  $M_{max}$ , as determined by Load Condition 2, cannot be used in

combination with a shear force of any magnitude and  $V_{max}$ , as determined by Load Condition 1, cannot be used in combination with a moment force of any magnitude. With load condition, as shear force increases moment strength decreases, and as moment force increases shear strength decreases. Therefore, when the inflection point (point of zero moment) is located below the SWP bracket,  $V_{max}$  and  $M_{max}$  loading  $\underline{may}$   $\underline{NOT}$  be applied to the bracket simultaneously without any reduction in strength. This condition is rare and should not occur when foundation is correctly designed.

# 15. Sturdi-Wall Plus Bracket Design Chart

Table 15.1 shows the shear, uplift, and bending strength for the SWP brackets. The values in Table 15.1 are based on calculations for the steel bracket, the steel-to-wood connection and the steel-to-concrete connection. The strength values for the steel-to-wood connection have been adjusted by the Load Duration Factor,  $C_D$ , of 1.6 (ASD) and the Time Effect Factor,  $\lambda$ , of 1.0 (LRFD) consistent with short duration loads. No further increases are permitted. The steel-to-concrete design values are for concrete with a minimum compressive strength,  $f'_c$ , of 3 ksi and a minimum concrete cover of two inches. The allowable loads for the concrete connection have been divided by 1.6 to convert from Load and Resistance Factor Design (LRFD) to Allowable Stress Design (ASD). The column base reactions may not exceed values in Table 15.1.

The steel-to-concrete calculations for Table 15.1 are limited only to the strength of rebar that is part of SWP bracket, compressive strength of concrete and rebar development. The foundation designer must ensure that concrete has sufficient strength at the bracket to receive the shear, bending (moment), uplift and downward forces and specify vertical, horizontal and transverse (stirrups) rebar as required by analysis.

| Tabl         | Table 15.1: Shear, Uplift, and Bending Strength for Sturdi-Wall Plus Anchor Brackets |                                    |               |                |                 |                               |                                   |                   |                   |
|--------------|--------------------------------------------------------------------------------------|------------------------------------|---------------|----------------|-----------------|-------------------------------|-----------------------------------|-------------------|-------------------|
| MODEL<br>NO. | POST<br>SIZE                                                                         | ASD<br>(Allowable Strength Design) |               |                | (Load and       | LRFD<br>d Resistar<br>Design) | Effective Rotational<br>Stiffness |                   |                   |
|              |                                                                                      | Bending<br>(in-lb)                 | Shear<br>(lb) | Uplift<br>(lb) | Bending (in-lb) | Shear<br>(lb)                 | Uplift<br>(lb)                    | M/θ<br>(in-k/deg) | M/θ<br>(in-k/rad) |
| SWP46        | 4x6                                                                                  | 24960                              | 2100          | 4835           | 33670           | 2830                          | 6515                              | 34.8              | 1900              |
| SWP63        | 3-ply 2x6                                                                            | 24960                              | 2100          | 4835           | 33670           | 2830                          | 6515                              | 34.8              | 1900              |
| SWP64        | 4-ply 2x6                                                                            | 31190                              | 2380          | 4835           | 46880           | 3200                          | 6515                              | 45.4              | 2550              |
| SWP66        | 6x6                                                                                  | 24960                              | 2100          | 4835           | 33670           | 2830                          | 6515                              | 35.6              | 1950              |
| SWP83        | 3-ply 2x8                                                                            | 49430                              | 3030          | 8490           | 66670           | 4080                          | 11450                             | 83.2              | 4700              |
| SWP84        | 4-ply 2x8                                                                            | 49430                              | 3030          | 8490           | 66670           | 4080                          | 11450                             | 79.7              | 4500              |
| SWP85        | 5-ply 2x8                                                                            | 49430                              | 3030          | 8210           | 66670           | 4080                          | 11450                             | 78.3              | 4450              |
| SWP88        | 8x8                                                                                  | 49430                              | 3030          | 8010           | 66670           | 4080                          | 11450                             | 78.0              | 4400              |

#### **Table 15.1 Footnotes:**

- This chart is for Sturdi-Wall Plus brackets for use in post-frame building applications to connect wood columns to a concrete wall or foundation.
- 2. Loads applied to the brackets from the columns are a vertical uplift force, horizontal shear force, and a moment about the strong axis of the column.

- Steel-to-Wood connections were calculated as per the NDS 2018 using columns with Specific Gravity of 0.55, dry service conditions; if brackets are used in wet environment, tabulated shear, moment, and uplift values must be adjusted by the wet-service factor per the NDS.
- 4. The allowable loads in concrete have been divided by 1.6 to convert from LRFD to ASD.
- 5. Concrete design numbers are based on a minimum concrete compressive strength of 3000 psi
- All rebar is weldable A706, Grade 60, #4 for 4, 5 and 6 series brackets and #5 for 8 series brackets
- 7. Bolts are 1/2" diameter SAE J429 Grade 5 with hex nuts
- 8. Screws are 1/4" diameter x 3" Strong Drive Screws (SDS) by Simpson Strong Tie, or alternative screws approved by Perma-Column
- 9. Minimum concrete cover for rebar shall be 3" when cast against and permanently exposed to earth, or 2" when exposed to earth or weather
- 10. Wood column above the bracket and concrete foundation below the bracket to be designed by others
- 11. Install all fasteners as per the manufacturer's specifications and these notes
- 12. Final bracket design should include a complete building analysis performed by a design professional

# 16. Summary and Conclusion

Sturdi-Wall anchor brackets are designed to be used in a post-frame building application to connect wood columns to a concrete foundation. The standard Sturdi-Wall brackets are designed to transfer uplift, shear and downward forces from the wood column into the concrete foundation and can be installed with a wet-set or post-installed (drilled) anchors. The standard Sturdi-Wall anchor brackets do not have an ability to transfer any measurable moments from the wood column into the concrete foundation. Sturdi-Wall Plus anchor brackets, on the other hand, do provide a moment-resisting semi-rigid connection between the wood column and the concrete foundation. The SWP brackets, however, are only suitable for a wet-set installation. The building must be designed to resist lateral loads through diaphragm action or other bracing means. SW and SWP brackets are not an alternative to this requirement and are not recommended for columns that do not have a lateral restraint at the top.

This design manual can be downloaded from www.permacolumn.com

# STURDI-WALL & STURDI-WALL PLUS

SW46, SW55, SW63, SW64, SW65, SW66, SW60, SW 60C, SW83, SW84, SW85, SW88, SW80, SWP46, SWP63, SWP64, SWP66, SWP83, SWP84, SWP85 and SWP88 models

# **CALCULATIONS**

(Revision 7)
IBC 2018
ACI 318-14
ANSI/AISC 360-16
ANSI/AWC NDS 2015



TTE Project Number E060-18

Prepared by

Dimitry Reznik, P.E. Timber Tech Engineering, Inc dar@timbertecheng.com

April 2, 2022 (supersedes all prior versions)
www.timbertecheng.com

East: 22 Denver Road, Suite B Denver, PA 17517 717.335.2750 Fax: 717.335.2753

West: 406 S. Main St, P.O. Box 509 Kouts, IN 46347 219.766.2499 Fax: 219.766.2394

# **Revision 1 Changes:**

Models SW88 and SWP88 are added to the calculations.

# **Revision 2 Changes:**

Model SW60C is added to the calculations

# **Revision 3 Changes:**

Models SW46, SW55, SW65 and SWP46 are added to the calculations.

# **Revision 4 Changes:**

Section 11 (Shear Strength Calculations for SWP models) is added to the calculations

# **Revision 5 Changes:**

Ultimate tensile strength, F<sub>u</sub>, of all SW and SWP steel brackets in Sections 2 and 5 is decreased from 60 ksi to 55 ksi per ASTM A1018. The bending yield strength of the bolts in Sections 1, 4, 8 and 10 is increased from 45 ksi, to 106 ksi for SAE J429 Grade 5 bolts per 2015 NDS, Appendix I.4.

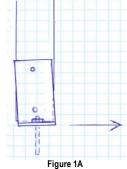
# **Revision 6 Changes:**

Duplicated Sections 1, 4, 5, 8 and 10 (sections that include wood screw calculations). The Rev. 6 calculations now include values based on the SDS Simpson screws and the stronger Perma-Column proprietary screws. Sections 8.1 and 8.2 have been updated to include shear strength of the bracket-to-wood connections (changes to the narrative at the beginning of the section and changes to Tables 8.1E and 8.2E). Section 2 has been updated to include the effects of twisting in the universal brackets.

# **Revision 7 Changes:**

Added Tables 10.1H and 10.2H (summary of uplift design values with reductions to SWP 46, 63, 64 and 66 models per latest test which was limited by values at 1/8" displacement). Minor units correction in Sections 10.1 and 10.2.

# 1.1 STURDI-WALL: SHEAR STRENGTH OF STEEL-TO-WOOD CONNECTION\*


#### \*WITH SDS SCREWS BY SIMPSON STRONG TIE

Each Sturdi-Wall (SW) steel bracket is fastened to the wood column with 0.242"x3" structural screws and 1/2" SAE J429 Grade 5 through bolts. There are two fastener groups, the top fastener group and the bottom fastener group. The centroids of the fastener groups are separated by the distance "s". To calculate the location of each centroid group, it is necessary to first determine the slip-modulus for the 0.242" structural screw and the 1/2" through bolt. Per the Wood Handbook (FPL, 2010, United States Department of Agriculture Forest Service) the fastener slip-modulus for dowels in single shear in steel-to-wood application can be calculated using the following expression: k = 270,000 D<sup>1.5</sup>, where k is the slip-modulus and D is the fastener diameter. The slip modulus equation, however, does not include slippage due to fastener-hole clearance: a fastener has the freedom to move laterally with respect to the steel plate until it comes in contact with the edge of the hole in the steel plate. The holes for the screws and the bolts are 5/16" and 5/8" respectively. IF the fasteners are installed precisely through the center of the hole in the steel plate, the clearance on either side of the screw and the bolt is approximately 1/32" and 1/16", respectively. The screws will be engaged and start transferring load before the bolt may come in contact with the edge of the hole in the steel plate. For this reason, the slip-modulus of the bolt is reduced proportionally to the ratio of clearances: (1/32") / (1/16") = 0.5, or 50%. The individual and collective slip-modulus for each fastener group is shown in Table 1A.

From the free body diagram (Figure 1B), the shear force at the bottom of the bracket, between the bracket and the concrete surface,  $V = F_B - F_T$ , where  $F_B$  and  $F_T$  are horizontal forces at bottom and top fastener groups, respectively, and  $F_B = V (s+y_B) / s$ . From the same body diagram, it is evident that the force  $F_B$  is greater than  $F_T$ , and, since the type and quantity of fasteners in each group is the same, the shear strength of the SW bracket is controlled by the shear strength of the bottom fastener group:  $V = s F_B / (s + y_B)$ .

The load on each fastener type (screw, bolt) within the fastener group is proportional to the ratio of the slip-modulus of the fastener type to the cumulative slip-modulus of the entire fastener group: Nsks/ka, Nbkb/ka, where Ns is the quantity of screws within the fastener group, N<sub>n</sub> is the quantity of bolts in double shear within the fastener group, k<sub>s</sub> is the slip-modulus of one screw in single shear,  $k_b$  is the slip-modulus of one bolt in double shear, and  $k_g$  is the cumulative slip-modulus of the entire fastener group (Table 1B). The slip-modulus of the screw fasteners does not equal the slip modulus of the bolt fastener(s):  $N_s k_s \neq N_b k_b$ . As a result, one fastener type is loaded to the maximum allowable or design lateral strength, 2F). The allowable (ASD) and design (LRFD) shear strengths of each SW model as determined based on the steel-to-

while the second fastener type receives the balance of the load which will not reach the fastener's maximum capacity (Table wood connection are provided in Table 1G.



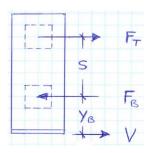



Figure 1B

The calculations are completed in Visual Analysis by IES and Microsoft Excel (2016) using the listed equations.

#### GOVERNING CODE:

National Design Specification for Wood Construction, NDS (2015)

#### **GOVERNING EQUATIONS:**

Subscript "b" = bolts

| Allowable Lateral Strength of Screws  | $Z'_s$ , $ASD N_s = N_s Z C_D C_\Delta$                | NDS Table 11.3.1 |
|---------------------------------------|--------------------------------------------------------|------------------|
| Design Lateral Strength of Screws     | $Z'_{s, LRFD} N_s = \phi N_s Z \lambda C_{\Delta} K_F$ | NDS Table 11.3.1 |
| Allowable Lateral Strength of Bolt(s) | $Z'_{b, ASD} N_b = N_b Z C_D C_\Delta$                 | NDS Table 11.3.1 |
| Design Lateral Strength of Bolt(s)    | $Z'_{b,LRFD}N_b = \varphi N_b Z \lambda C_\Delta K_F$  | NDS Table 11.3.1 |

| Z = Unadjusted reference lateral (shear) design value for one fastener Z' = Adjusted lateral design value for one fastener $C_{\text{D}}$ = ASD load duration factor | NDS Table 12.3.1A<br>NDS Table 11.3.1<br>NDS Table 2.3.2 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| $C_{\Delta}$ = Geometry factor                                                                                                                                       | NDS 12.5.1                                               |
| N = total quantity of fasteners in the group $\phi$ = LRFD resistance factor $\lambda$ = LRFD time effect factor                                                     | NDS Table N2<br>NDS Table N3                             |
| $K_F$ = ASD to LRFD format conversion factor                                                                                                                         | NDS Table N1                                             |
| Subscript "s" = screws                                                                                                                                               |                                                          |

| Slip Modulus for (1) screw, single shear | k <sub>s</sub> = 270,000 D <sub>s</sub> <sup>1.5</sup> | FPL, Chapter 8         |
|------------------------------------------|--------------------------------------------------------|------------------------|
| Slip Modulus for (1) bolt, double shear  | $k_b = 0.5 [ 2(270,000) D_b^{1.5} ]$                   | (see discussion above) |
| Slip Modulus for a Fastener Group        | $k_g = N_s k_s + N_b k_b$                              |                        |

 $N_{\mbox{\scriptsize s}}$  = quantity of screws in one fastener group

 $N_b$  = quantity of bolts in one fastener group

 $D_s$  = screw diameter

D<sub>b</sub> = bolt diameter

| Allowable Lateral Strength of Fastener Group | $Z'_{g, ASD} = min [Z'_{s, ASD}(k_g/k_s), Z'_{b, ASD}(k_g/k_b)]$    |
|----------------------------------------------|---------------------------------------------------------------------|
| Design Lateral Strength of Fastener Group    | $Z'_{g, LRFD} = min [Z'_{s, LRFD}(k_g/k_s), Z'_{b, LRFD}(k_g/k_b)]$ |

| Allowable Shear Strength of Connection | $V_n/\Omega = s Z'_{g, ASD} / (s + y_B).$ |  |
|----------------------------------------|-------------------------------------------|--|
| Design Shear Strength of Connection    | $\phi V_n = s Z'_{g, LRFD} / (s + y_B).$  |  |

 $<sup>\</sup>boldsymbol{s}$  = distance between the centroids of the top and bottom fastener groups

# **CALCULATIONS:**

|         |       | TABLE 1.1 | A: SLIP M      | ODLULUS        | OF FASTENE | RS    |         |
|---------|-------|-----------|----------------|----------------|------------|-------|---------|
|         | $D_s$ | $D_b$     | k <sub>s</sub> | k <sub>b</sub> | $N_s$      | $N_b$ | $k_g$   |
| Model   | (in)  | (in)      | (lb/in)        | (lb/in)        |            |       | (lb/in) |
| SW 46   | 0.242 | 0.50      | 32143          | 95459          | 2          | 1     | 159745  |
| SW 55   | 0.242 | 0.50      | 32143          | 95459          | 2          | 1     | 159745  |
| SW 63   | 0.242 | 0.50      | 32143          | 95459          | 2          | 1     | 159745  |
| SW 64   | 0.242 | 0.50      | 32143          | 95459          | 2          | 1     | 159745  |
| SW 65   | 0.242 | 0.50      | 32143          | 95459          | 2          | 1     | 159745  |
| SW 66   | 0.242 | 0.50      | 32143          | 95459          | 2          | 1     | 159745  |
| SW 83   | 0.242 | 0.50      | 32143          | 95459          | 4          | 1     | 224032  |
| SW 84   | 0.242 | 0.50      | 32143          | 95459          | 4          | 1     | 224032  |
| SW 85   | 0.242 | 0.50      | 32143          | 95459          | 4          | 1     | 224032  |
| SW 88   | 0.242 | 0.50      | 32143          | 95459          | 4          | 1     | 224032  |
| SW 60*  | 0.242 | 0.50      | 32143          | 95459          | 2          | 1     | 159745  |
| SW 80*  | 0.242 | 0.50      | 32143          | 95459          | 4          | 1     | 224032  |
| SW 60C* | 0.242 | n/a       | 32143          | n/a            | 3          | n/a   | 96429   |

<sup>\*</sup> Pair

| TABLE 1.1B: LOCATION OF AND DISTANCE BETWEEN THE CENTROIDS OF THE TOP AND BOTTOM FASTEI |                |                |      |        |         |           |         |         |        |       | rs         |       |
|-----------------------------------------------------------------------------------------|----------------|----------------|------|--------|---------|-----------|---------|---------|--------|-------|------------|-------|
|                                                                                         | k <sub>s</sub> | k <sub>b</sub> |      |        |         | Elevation | (in)    |         |        | Ув    | <b>y</b> T | s     |
| Model                                                                                   | (lb/in)        | (lb/in)        | Base | Bolt 1 | Screw 1 | Screw 2   | Screw 3 | Screw 4 | Bolt 2 | (in)  | (in)       | (in)  |
| SW 46                                                                                   | 32143          | 95459          | 0    | 3.375  | 4.375   | n/a       | n/a     | 11.125  | 12.125 | 3.627 | 11.87      | 8.25  |
| SW 55                                                                                   | 32143          | 95459          | 0    | 3.375  | 4.375   | n/a       | n/a     | 11.125  | 12.125 | 3.627 | 11.87      | 8.25  |
| SW 63                                                                                   | 32143          | 95459          | 0    | 3.375  | 4.375   | n/a       | n/a     | 11.125  | 12.125 | 3.627 | 11.87      | 8.25  |
| SW 64                                                                                   | 32143          | 95459          | 0    | 3.375  | 4.375   | n/a       | n/a     | 11.125  | 12.125 | 3.627 | 11.87      | 8.25  |
| SW 65                                                                                   | 32143          | 95459          | 0    | 3.375  | 4.375   | n/a       | n/a     | 11.125  | 12.125 | 3.627 | 11.87      | 8.25  |
| SW 66                                                                                   | 32143          | 95459          | 0    | 3.375  | 4.375   | n/a       | n/a     | 11.125  | 12.125 | 3.627 | 11.87      | 8.25  |
| SW 83                                                                                   | 32143          | 95459          | 0    | 3.875  | 4.875   | 6.875     | 14.125  | 16.125  | 17.125 | 4.680 | 16.32      | 11.64 |
| SW 84                                                                                   | 32143          | 95459          | 0    | 3.875  | 4.875   | 6.875     | 14.125  | 16.125  | 17.125 | 4.680 | 16.32      | 11.64 |
| SW 85                                                                                   | 32143          | 95459          | 0    | 3.875  | 4.875   | 6.875     | 14.125  | 16.125  | 17.125 | 4.680 | 16.32      | 11.64 |
| SW 88                                                                                   | 32143          | 95459          | 0    | 3.875  | 4.875   | 6.875     | 14.125  | 16.125  | 17.125 | 4.680 | 16.32      | 11.64 |
| SW 60                                                                                   | 32143          | 95459          | 0    | 3.375  | 4.375   | n/a       | n/a     | 11.125  | 12.125 | 3.627 | 11.87      | 8.25  |
| SW 80                                                                                   | 32143          | 95459          | 0    | 3.875  | 4.875   | 6.875     | 14.125  | 16.125  | 17.125 | 4.680 | 16.32      | 11.64 |
| SW 60C                                                                                  | 32143          | 32143          | 0    | 3.875  | 4.375   | 5.375     | 11.125  | 11.625  | 12.625 | 4.542 | 11.79      | 7.25  |

| TABLE 1.1C: AD                                     | JUSTED LAT                       | ERAL DESIG | ON VALUE C                               | OF ONE SCREW: NDS T     | able 12.3.1A (Yi      | eld Limit Ec          | uations) |                |        |
|----------------------------------------------------|----------------------------------|------------|------------------------------------------|-------------------------|-----------------------|-----------------------|----------|----------------|--------|
|                                                    |                                  | SDS        | F yb                                     | 164000                  | 1+R <sub>e</sub>      | 1.1                   |          | θ              | 90     |
| Screw Diameter (in)                                | D                                | 0.242      | F <sub>em, par</sub>                     | 5526                    | 2+R <sub>e</sub>      | 2.1                   |          | I <sub>m</sub> | 1259.3 |
| Screw Length (in)                                  | L                                | 3          | F em, perp                               | 5526                    | k 1                   | 0.408                 |          | Is             | 1280.4 |
| Thickness of Steel Plate Member (in)               | $I_s$                            | 0.25       | F <sub>em</sub>                          | 5526                    | k 2                   | 0.536                 |          | II             | 522.4  |
| Thickness of Wood Member (in)                      | $I_{m}$                          | 4.5        | $R_{e}$                                  | 0.089                   | <b>k</b> 3            | 6.944                 |          | III m          | 572.7  |
| Screw Penetration into main member (in)            | р                                | 2.75       | $R_t$                                    | 11.000                  | F <sub>es, par</sub>  | 61800                 |          | III s          | 380.5  |
| Minimum Allowed Penetration, p <sub>min</sub> = 6D | $p_{min}$                        | 1.5        | Κo                                       | 2.920                   | F <sub>es, perp</sub> | 61800                 |          | IV             | 472.3  |
| Specific Gravity of Wood Member                    | G                                | 0.55       | р                                        | 2.8                     | F <sub>es</sub>       | 61800                 |          | $D_r$          | 0.242  |
| Lateral Design Value (lbs)                         | Z                                | 380        |                                          | LRFD resistance factor  |                       |                       | ф        | 0.65           |        |
| ASD Load Duration Factor                           | $C_D$                            | 1.6        |                                          | LRFD time effect factor |                       |                       | λ        | 1              |        |
| Geometry Factor                                    | $C_{\scriptscriptstyle{\Delta}}$ | 1          |                                          | ASD to LRFD format con- | version factor        |                       | $K_{F}$  | 3.32           |        |
| ASD Adjusted Lateral Design Value (lbs)            | Z' <sub>s. ASD</sub>             | 609        | LRFD Adjusted Lateral Design Value (lbs) |                         |                       | Z' <sub>s. LRFD</sub> | 821      |                |        |

| TABLE 1.1D: ADJU                   | STED LATERAL                     | DESIGN VALU | JE OF ONE E           | OLT (DOL   | JBLE SHEAR):    | NDS Table 12     | .3.1A (Yield | Limit Equati          | ons)           |      |
|------------------------------------|----------------------------------|-------------|-----------------------|------------|-----------------|------------------|--------------|-----------------------|----------------|------|
| Bolt Diameter (in)                 | D                                | 0.5         | $F_{\text{em, par}}$  | 6160       |                 | $K_{\theta}$     | 1.250        |                       | I <sub>m</sub> | 1631 |
| Main Member Thickness (in)         | $t_{m,min}$                      | 4.5         | $F_{\text{em, perp}}$ | 3626       |                 | 1+R <sub>e</sub> | 1.042        |                       | $III_s$        | 1494 |
| Side Member Thickness (in)         | $t_s$                            | 0.25        | $F_{em}$              | 3626       |                 | 2+R <sub>e</sub> | 2.042        |                       | IV             | 1960 |
| Dowel Bearing Strength (psi)       | F <sub>es</sub>                  | 87000       | $R_{e}$               | 0.042      |                 | $k_3$            | 13.463       |                       |                |      |
| Bolt Yield Strength (psi)          | $F_{yb}$                         | 106000      |                       |            |                 |                  |              |                       |                |      |
| Max Angle Load to Grain (deg)      | θ                                | 90          |                       |            |                 |                  |              |                       |                |      |
| Specific Gravity                   | G                                | 0.55        |                       |            |                 |                  |              |                       |                |      |
| Reference Lateral Design Value (Z) | Z                                | 1494        |                       | LRFD resis | tance factor    |                  |              | ф                     | 0.65           |      |
| ASD Load Duration Factor           | $C_D$                            | 1.6         |                       | LRFD time  | effect factor   |                  |              | λ                     | 1              |      |
| Geometry Factor                    | $C_{\scriptscriptstyle{\Delta}}$ | 1           |                       | ASD to LR  | FD format conv  | ersion factor    |              | $K_F$                 | 3.32           |      |
| ASD Adjusted Lateral Design Value  | (lbs) Z' <sub>b, ASD</sub>       | 2391        |                       | LRFD Adjı  | usted Lateral D | esign Value (Ib  | s)           | Z' <sub>b, LRFD</sub> | 3224           |      |

|        |         |                |         | TABLE 1.1E: LATERA      | L (SHEAR) STRENGTH      | OF EACH FASTENER GROU    | P                        |                      |                       |
|--------|---------|----------------|---------|-------------------------|-------------------------|--------------------------|--------------------------|----------------------|-----------------------|
|        | ks      | k <sub>b</sub> | $k_g$   | $Z'_{s, ASD} (k_g/k_s)$ | $Z'_{b, ASD} (k_g/k_b)$ | $Z'_{s, LRFD} (k_g/k_s)$ | $Z'_{b, LRFD} (k_g/k_b)$ | Z' <sub>g, ASD</sub> | Z' <sub>g, LRFD</sub> |
| Model  | (lb/in) | (lb/in)        | (lb/in) | (lb)                    | (lb)                    | (lb)                     | (lb)                     | (lb)                 | (lb)                  |
| SW 46  | 32143   | 95459          | 159745  | 3026                    | 4001                    | 4081                     | 5396                     | 3026                 | 4081                  |
| SW 55  | 32143   | 95459          | 159745  | 3026                    | 4001                    | 4081                     | 5396                     | 3026                 | 4081                  |
| SW 63  | 32143   | 95459          | 159745  | 3026                    | 4001                    | 4081                     | 5396                     | 3026                 | 4081                  |
| SW 64  | 32143   | 95459          | 159745  | 3026                    | 4001                    | 4081                     | 5396                     | 3026                 | 4081                  |
| SW 65  | 32143   | 95459          | 159745  | 3026                    | 4001                    | 4081                     | 5396                     | 3026                 | 4081                  |
| SW 66  | 32143   | 95459          | 159745  | 3026                    | 4001                    | 4081                     | 5396                     | 3026                 | 4081                  |
| SW 83  | 32143   | 95459          | 224032  | 4243                    | 5611                    | 5723                     | 7567                     | 4243                 | 5723                  |
| SW 84  | 32143   | 95459          | 224032  | 4243                    | 5611                    | 5723                     | 7567                     | 4243                 | 5723                  |
| SW 85  | 32143   | 95459          | 224032  | 4243                    | 5611                    | 5723                     | 7567                     | 4243                 | 5723                  |
| SW 88  | 32143   | 95459          | 224032  | 4243                    | 5611                    | 5723                     | 7567                     | 4243                 | 5723                  |
| SW 60* | 32143   | 95459          | 159745  | 3026                    | 4001                    | 4081                     | 5396                     | 3026                 | 4081                  |
| SW 80* | 32143   | 95459          | 224032  | 4243                    | 5611                    | 5723                     | 7567                     | 4243                 | 5723                  |
| SW 60C | 32143   | n/a            | 96429   | 1826                    | n/a                     | 2463                     | n/a                      | 1826                 | 2463                  |

|         |                | TABLE 1.1F     | : LOAD DISTRIBUTION | RATIO AND LOAD-TO- | STRENGTH RATIO |        |
|---------|----------------|----------------|---------------------|--------------------|----------------|--------|
|         | N <sub>s</sub> | N <sub>b</sub> | Load Dis            | stribution         | Load / Str     | rength |
| Model   |                |                | Screws              | Bolts              | Screws         | Bolts  |
| SW 46   | 2              | 1              | 40.2%               | 59.8%              | 100.0%         | 76%    |
| SW 55   | 2              | 1              | 40.2%               | 59.8%              | 100.0%         | 76%    |
| SW 63   | 2              | 1              | 40.2%               | 59.8%              | 100.0%         | 76%    |
| SW 64   | 2              | 1              | 40.2%               | 59.8%              | 100.0%         | 76%    |
| SW 65   | 2              | 1              | 40.2%               | 59.8%              | 100.0%         | 76%    |
| SW 66   | 2              | 1              | 40.2%               | 59.8%              | 100.0%         | 76%    |
| SW 83   | 4              | 1              | 57.4%               | 42.6%              | 100.0%         | 76%    |
| SW 84   | 4              | 1              | 57.4%               | 42.6%              | 100.0%         | 76%    |
| SW 85   | 4              | 1              | 57.4%               | 42.6%              | 100.0%         | 76%    |
| SW 88   | 4              | 1              | 57.4%               | 42.6%              | 100.0%         | 76%    |
| SW 60*  | 2              | 1              | 40.2%               | 59.8%              | 100.0%         | 76%    |
| SW 80*  | 4              | 1              | 57.4%               | 42.6%              | 100.0%         | 76%    |
| SW 60C* | 3              | 0              | 100.0%              | 0.0%               | 100.0%         | 0%     |

\*Pair

| TABLE 1.1G: SHEAR S | TRENGTH OF STEEL | L-TO-WOOD CONNECTION |
|---------------------|------------------|----------------------|
|                     | ASD              | LRFD                 |
|                     | $V_n/\Omega$     | $\phi V_n$           |
| Model               | (lb)             | (lb)                 |
| SW 46               | 2100             | 2830                 |
| SW 55               | 2100             | 2830                 |
| SW 63               | 2100             | 2830                 |
| SW 64               | 2100             | 2830                 |
| SW 65               | 2100             | 2830                 |
| SW 66               | 2100             | 2830                 |
| SW 83               | 3030             | 4080                 |
| SW 84               | 3030             | 4080                 |
| SW 85               | 3030             | 4080                 |
| SW 88               | 3030             | 4080                 |
| SW 60*              | 2100             | 2830                 |
| SW 80*              | 3030             | 4080                 |
| SW 60C              | 1120             | 1510                 |
| *Pair               | <u> </u>         |                      |

NOTE: SW 60C bracket is a corner post bracket that is intended to be used alone (not in pairs). These calculations assume that wall girts and other secondary will provide torsional stability to the corner column. This bracket may not be used with columns that do not have sufficient girt/secondary framing to resist torsional loads.

# 1.2 STURDI-WALL: SHEAR STRENGTH OF STEEL-TO-WOOD CONNECTION\*

#### \*WITH PROPRIETARY SCREWS

Each Sturdi-Wall (SW) steel bracket is fastened to the wood column with 0.242"x3" structural screws and 1/2" SAE J429 Grade 5 through bolts. There are two fastener groups, the top fastener group and the bottom fastener group. The centroids of the fastener groups are separated by the distance "s". To calculate the location of each centroid group, it is necessary to first determine the slip-modulus for the 0.242" structural screw and the 1/2" through bolt. Per the Wood Handbook (FPL, 2010, United States Department of Agriculture Forest Service) the fastener slip-modulus for dowels insigle shear in steel-to-wood application can be calculated using the following expression: k = 270,000 D<sup>1.5</sup>, where k is the slip-modulus and D is the fastener diameter. The slip modulus equation, however, does not include slippage due to fastener-hole clearance: a fastener has the freedom to move laterally with respect to the steel plate until it comes in contact with the edge of the hole in the steel plate. The holes for the screws and the bolts are 5/16" and 5/8" respectively. If the fasteners are installed precisely through the center of the hole in the steel plate, the clearance on either side of the screw and the bolt is approximately 1/32" and 1/16", respectively. The screws will be engaged and start transferring load before the bolt may come in contact with the edge of the hole in the steel plate. For this reason, the slip-modulus of the bolt is reduced proportionally to the ratio of clearances: (1/32") / (1/16") = 0.5, or 50%. The individual and collective slip-modulus for each fastener group is shown in Table 1A.

From the free body diagram (Figure 1B), the shear force at the bottom of the bracket, between the bracket and the concrete surface,  $V = F_B - F_T$ , where  $F_B$  and  $F_T$  are horizontal forces at bottom and top fastener groups, respectively, and  $F_B = V$  (s+y<sub>B</sub>) / s. From the same body diagram, it is evident that the force  $F_B$  is greater than  $F_T$ , and, since the type and quantity of fasteners in each group is the same, the shear strength of the SW bracket is controlled by the shear strength of the bottom fastener group:  $V = s F_B / (s + y_B)$ .

The load on each fastener type (screw, bolt) within the fastener group is proportional to the ratio of the slip-modulus of the fastener type to the cumulative slip-modulus of the entire fastener group:  $N_s k_s / k_g$ ,  $N_b k_b / k_g$ , where  $N_s$  is the quantity of screws within the fastener group,  $N_b$  is the quantity of bolts in double shear within the fastener group,  $k_s$  is the slip-modulus of one screw in single shear,  $k_b$  is the slip-modulus of one bolt in double shear, and  $k_g$  is the cumulative slip-modulus of the entire fastener group (Table 1B). The slip-modulus of the screw fasteners does not equal the slip modulus of the bolt fastener(s):  $N_s k_s \neq N_b k_b$ . As a result, one fastener type is loaded to the maximum allowable or design lateral strength, while the second fastener type receives the balance of the load which will not reach the fastener's maximum capacity (Table 2F). The allowable (ASD) and design (LRFD) shear strengths of each SW model as determined based on the steel-to-wood connection are provided in Table 1G.

The calculations are completed in Visual Analysis by IES and Microsoft Excel (2016) using the listed equations.

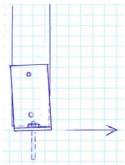



Figure 1A

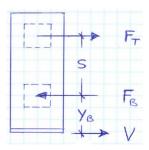



Figure 1B

#### **GOVERNING CODE:**

National Design Specification for Wood Construction, NDS (2015)

#### **GOVERNING EQUATIONS:**

Subscript "b" = bolts

| Allowable Lateral Strength of Screws  | $Z'_s$ , ASD $N_s = N_s Z C_D C_\Delta$                   | NDS Table 11.3.1 |
|---------------------------------------|-----------------------------------------------------------|------------------|
| Design Lateral Strength of Screws     | $Z'_{s, LRFD} N_s = \phi N_s Z \lambda C_{\Delta} K_F$    | NDS Table 11.3.1 |
| Allowable Lateral Strength of Bolt(s) | $Z'_{b, ASD} N_b = N_b Z C_D C_\Delta$                    | NDS Table 11.3.1 |
| Design Lateral Strength of Bolt(s)    | $Z'_{b, LRFD} N_b = \varphi N_b Z \lambda C_{\Delta} K_F$ | NDS Table 11.3.1 |

| Z = Unadjusted reference lateral (shear) design value for one fastener<br>Z' = Adjusted lateral design value for one fastener | NDS Table 12.3.1A<br>NDS Table 11.3.1 |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| C <sub>D</sub> = ASD load duration factor                                                                                     | NDS Table 2.3.2                       |
| C <sub>A</sub> = Geometry factor                                                                                              | NDS 12.5.1                            |
| N = total quantity of fasteners in the group                                                                                  | NDS 12.3.1                            |
| φ = LRFD resistance factor                                                                                                    | NDS Table N2                          |
| λ = LRFD time effect factor                                                                                                   | NDS Table N3                          |
| K <sub>E</sub> = ASD to LRFD format conversion factor                                                                         | NDS Table N1                          |
| Subscript "s" = screws                                                                                                        |                                       |

 $N_{\mbox{\scriptsize s}}$  = quantity of screws in one fastener group

 $N_b$  = quantity of bolts in one fastener group

 $D_s$  = screw diameter

D<sub>b</sub> = bolt diameter

Allowable Lateral Strength of Fastener Group  $Z'_{g, ASD} = min [Z'_{s, ASD}(k_g/k_s), Z'_{b, ASD}(k_g/k_b)]$ Design Lateral Strength of Fastener Group  $Z'_{g, LRFD} = min [Z'_{s, LRFD}(k_g/k_s), Z'_{b, LRFD}(k_g/k_b)]$ 

Allowable Shear Strength of Connection  $V_n/\Omega = s \ Z'_{g,\,ASD} \ / \ (s+y_B).$  Design Shear Strength of Connection  $\varphi V_n = s \ Z'_{g,\,LRFD} \ / \ (s+y_B).$ 

# **CALCULATIONS:**

|         |       | TABLE 1.2 | A: SLIP M      | ODLULUS        | OF FASTENE | RS    |         |
|---------|-------|-----------|----------------|----------------|------------|-------|---------|
|         | $D_s$ | $D_b$     | k <sub>s</sub> | k <sub>b</sub> | $N_s$      | $N_b$ | $k_g$   |
| Model   | (in)  | (in)      | (lb/in)        | (lb/in)        |            |       | (lb/in) |
| SW 46   | 0.242 | 0.50      | 32143          | 95459          | 2          | 1     | 159745  |
| SW 55   | 0.242 | 0.50      | 32143          | 95459          | 2          | 1     | 159745  |
| SW 63   | 0.242 | 0.50      | 32143          | 95459          | 2          | 1     | 159745  |
| SW 64   | 0.242 | 0.50      | 32143          | 95459          | 2          | 1     | 159745  |
| SW 65   | 0.242 | 0.50      | 32143          | 95459          | 2          | 1     | 159745  |
| SW 66   | 0.242 | 0.50      | 32143          | 95459          | 2          | 1     | 159745  |
| SW 83   | 0.242 | 0.50      | 32143          | 95459          | 4          | 1     | 224032  |
| SW 84   | 0.242 | 0.50      | 32143          | 95459          | 4          | 1     | 224032  |
| SW 85   | 0.242 | 0.50      | 32143          | 95459          | 4          | 1     | 224032  |
| SW 88   | 0.242 | 0.50      | 32143          | 95459          | 4          | 1     | 224032  |
| SW 60*  | 0.242 | 0.50      | 32143          | 95459          | 2          | 1     | 159745  |
| SW 80*  | 0.242 | 0.50      | 32143          | 95459          | 4          | 1     | 224032  |
| SW 60C* | 0.242 | n/a       | 32143          | n/a            | 3          | n/a   | 96429   |

<sup>\*</sup> Pair

|        | TABLE 1.2B     | : LOCATIO      | ON OF AND D | DISTANCE B     | ETWEEN TI | HE CENTRO | IDS OF THE | TOP AND BOT | TOM FASTE | NER GROUP | s          |       |
|--------|----------------|----------------|-------------|----------------|-----------|-----------|------------|-------------|-----------|-----------|------------|-------|
|        | k <sub>s</sub> | k <sub>b</sub> |             | Elevation (in) |           |           |            |             |           |           | <b>y</b> T | s     |
| Model  | (lb/in)        | (lb/in)        | Base        | Bolt 1         | Screw 1   | Screw 2   | Screw 3    | Screw 4     | Bolt 2    | (in)      | (in)       | (in)  |
| SW 46  | 32143          | 95459          | 0           | 3.375          | 4.375     | n/a       | n/a        | 11.125      | 12.125    | 3.627     | 11.87      | 8.25  |
| SW 55  | 32143          | 95459          | 0           | 3.375          | 4.375     | n/a       | n/a        | 11.125      | 12.125    | 3.627     | 11.87      | 8.25  |
| SW 63  | 32143          | 95459          | 0           | 3.375          | 4.375     | n/a       | n/a        | 11.125      | 12.125    | 3.627     | 11.87      | 8.25  |
| SW 64  | 32143          | 95459          | 0           | 3.375          | 4.375     | n/a       | n/a        | 11.125      | 12.125    | 3.627     | 11.87      | 8.25  |
| SW 65  | 32143          | 95459          | 0           | 3.375          | 4.375     | n/a       | n/a        | 11.125      | 12.125    | 3.627     | 11.87      | 8.25  |
| SW 66  | 32143          | 95459          | 0           | 3.375          | 4.375     | n/a       | n/a        | 11.125      | 12.125    | 3.627     | 11.87      | 8.25  |
| SW 83  | 32143          | 95459          | 0           | 3.875          | 4.875     | 6.875     | 14.125     | 16.125      | 17.125    | 4.680     | 16.32      | 11.64 |
| SW 84  | 32143          | 95459          | 0           | 3.875          | 4.875     | 6.875     | 14.125     | 16.125      | 17.125    | 4.680     | 16.32      | 11.64 |
| SW 85  | 32143          | 95459          | 0           | 3.875          | 4.875     | 6.875     | 14.125     | 16.125      | 17.125    | 4.680     | 16.32      | 11.64 |
| SW 88  | 32143          | 95459          | 0           | 3.875          | 4.875     | 6.875     | 14.125     | 16.125      | 17.125    | 4.680     | 16.32      | 11.64 |
| SW 60  | 32143          | 95459          | 0           | 3.375          | 4.375     | n/a       | n/a        | 11.125      | 12.125    | 3.627     | 11.87      | 8.25  |
| SW 80  | 32143          | 95459          | 0           | 3.875          | 4.875     | 6.875     | 14.125     | 16.125      | 17.125    | 4.680     | 16.32      | 11.64 |
| SW 60C | 32143          | 32143          | 0           | 3.875          | 4.375     | 5.375     | 11.125     | 11.625      | 12.625    | 4.542     | 11.79      | 7.25  |

s = distance between the centroids of the top and bottom fastener groups

| TABLE 1.2C: AD.                                    | JUSTED LAT                       | ERAL DESIG | ON VALUE O                               | OF ONE SCREW: NDS Ta    | ble 12.3.1A (Yi       | eld Limit Ed          | uations) |                |        |
|----------------------------------------------------|----------------------------------|------------|------------------------------------------|-------------------------|-----------------------|-----------------------|----------|----------------|--------|
|                                                    |                                  |            | F <sub>yb</sub>                          | 199000                  | 1+R <sub>e</sub>      | 1.1                   |          | θ              | 90     |
| Screw Diameter (in)                                | D                                | 0.243      | F <sub>em, par</sub>                     | 5526                    | 2+R <sub>e</sub>      | 2.1                   |          | I <sub>m</sub> | 1260.2 |
| Screw Length (in)                                  | L                                | 3          | F <sub>em, perp</sub>                    | 5526                    | k 1                   | 0.408                 |          | Is             | 1281.3 |
| Thickness of Steel Plate Member (in)               | $I_s$                            | 0.25       | F <sub>em</sub>                          | 5526                    | k 2                   | 0.549                 |          | II             | 522.7  |
| Thickness of Wood Member (in)                      | l <sub>m</sub>                   | 4.5        | $R_e$                                    | 0.089                   | <b>k</b> 3            | 7.471                 |          | III m          | 587.1  |
| Screw Penetration into main member (in)            | р                                | 2.75       | $R_t$                                    | 11.000                  | F <sub>es, par</sub>  | 61800                 |          | III s          | 409.7  |
| Minimum Allowed Penetration, p <sub>min</sub> = 6D | $p_{min}$                        | 1.5        | Ko                                       | 2.930                   | F <sub>es, perp</sub> | 61800                 |          | IV             | 522.8  |
| Specific Gravity of Wood Member                    | G                                | 0.55       | р                                        | 2.8                     | F <sub>es</sub>       | 61800                 |          | $D_r$          | 0.243  |
| Lateral Design Value (lbs)                         | Z                                | 410        |                                          | LRFD resistance factor  |                       |                       | ф        | 0.65           |        |
| ASD Load Duration Factor                           | $C_D$                            | 1.6        |                                          | LRFD time effect factor |                       |                       | λ        | 1              |        |
| Geometry Factor                                    | $C_{\scriptscriptstyle{\Delta}}$ | 1          | ASD to LRFD format conversion factor     |                         |                       | $K_F$                 | 3.32     |                |        |
| ASD Adjusted Lateral Design Value (lbs)            | Z's, ASD                         | 655        | LRFD Adjusted Lateral Design Value (lbs) |                         |                       | Z' <sub>s, LRFD</sub> | 884      |                |        |

| TABLE 1.2D: ADJUSTED                    | LATERAL                          | DESIGN VALU | E OF ONE E                                                        | BOLT (DOL  | JBLE SHEAR):  | NDS Table 12     | .3.1A (Yield | Limit Equatio | ns)     |      |
|-----------------------------------------|----------------------------------|-------------|-------------------------------------------------------------------|------------|---------------|------------------|--------------|---------------|---------|------|
| Bolt Diameter (in)                      | D                                | 0.5         | $F_{\text{em, par}}$                                              | 6160       |               | $K_{\theta}$     | 1.250        |               | $I_{m}$ | 1631 |
| Main Member Thickness (in)              | $t_{\text{m, min}}$              | 4.5         | $F_{\text{em, perp}}$                                             | 3626       |               | 1+R <sub>e</sub> | 1.042        |               | $III_s$ | 1494 |
| Side Member Thickness (in)              | $t_s$                            | 0.25        | $F_{\text{em}}$                                                   | 3626       |               | 2+R <sub>e</sub> | 2.042        |               | IV      | 1960 |
| Dowel Bearing Strength (psi)            | $F_{es}$                         | 87000       | $R_{e}$                                                           | 0.042      |               | $k_3$            | 13.463       |               |         |      |
| Bolt Yield Strength (psi)               | $F_{yb}$                         | 106000      |                                                                   |            |               |                  |              |               |         |      |
| Max Angle Load to Grain (deg)           | é                                | 90          |                                                                   |            |               |                  |              |               |         |      |
| Specific Gravity                        | G                                | 0.55        |                                                                   |            |               |                  |              |               |         |      |
| Reference Lateral Design Value (Z)      | Z                                | 1494        |                                                                   | LRFD resis | tance factor  |                  |              | ф             | 0.65    |      |
| ASD Load Duration Factor                | $C_D$                            | 1.6         |                                                                   | LRFD time  | effect factor |                  |              | λ             | 1       |      |
| Geometry Factor                         | $C_{\scriptscriptstyle{\Delta}}$ | 1           | ASD to LRFD format conversion factor $K_F$ 3.3                    |            |               |                  | 3.32         |               |         |      |
| ASD Adjusted Lateral Design Value (lbs) | Z' <sub>b, ASD</sub>             | 2391        | LRFD Adjusted Lateral Design Value (lbs) Z' <sub>b, LRFD</sub> 32 |            |               |                  | 3224         |               |         |      |

|        |         |                |         | TABLE 1.2E: LATERA      | L (SHEAR) STRENGTH      | OF EACH FASTENER GROU    | P                        |                      |                       |
|--------|---------|----------------|---------|-------------------------|-------------------------|--------------------------|--------------------------|----------------------|-----------------------|
|        | ks      | k <sub>b</sub> | $k_g$   | $Z'_{s, ASD} (k_g/k_s)$ | $Z'_{b, ASD} (k_g/k_b)$ | $Z'_{s, LRFD} (k_g/k_s)$ | $Z'_{b, LRFD} (k_g/k_b)$ | Z' <sub>g, ASD</sub> | Z' <sub>g, LRFD</sub> |
| Model  | (lb/in) | (lb/in)        | (lb/in) | (lb)                    | (lb)                    | (lb)                     | (lb)                     | (lb)                 | (lb)                  |
| SW 46  | 32143   | 95459          | 159745  | 3258                    | 4001                    | 4394                     | 5396                     | 3258                 | 4394                  |
| SW 55  | 32143   | 95459          | 159745  | 3258                    | 4001                    | 4394                     | 5396                     | 3258                 | 4394                  |
| SW 63  | 32143   | 95459          | 159745  | 3258                    | 4001                    | 4394                     | 5396                     | 3258                 | 4394                  |
| SW 64  | 32143   | 95459          | 159745  | 3258                    | 4001                    | 4394                     | 5396                     | 3258                 | 4394                  |
| SW 65  | 32143   | 95459          | 159745  | 3258                    | 4001                    | 4394                     | 5396                     | 3258                 | 4394                  |
| SW 66  | 32143   | 95459          | 159745  | 3258                    | 4001                    | 4394                     | 5396                     | 3258                 | 4394                  |
| SW 83  | 32143   | 95459          | 224032  | 4569                    | 5611                    | 6162                     | 7567                     | 4569                 | 6162                  |
| SW 84  | 32143   | 95459          | 224032  | 4569                    | 5611                    | 6162                     | 7567                     | 4569                 | 6162                  |
| SW 85  | 32143   | 95459          | 224032  | 4569                    | 5611                    | 6162                     | 7567                     | 4569                 | 6162                  |
| SW 88  | 32143   | 95459          | 224032  | 4569                    | 5611                    | 6162                     | 7567                     | 4569                 | 6162                  |
| SW 60* | 32143   | 95459          | 159745  | 3258                    | 4001                    | 4394                     | 5396                     | 3258                 | 4394                  |
| SW 80* | 32143   | 95459          | 224032  | 4569                    | 5611                    | 6162                     | 7567                     | 4569                 | 6162                  |
| SW 60C | 32143   | n/a            | 96429   | 1966                    | n/a                     | 2652                     | n/a                      | 1966                 | 2652                  |

| * | D۵ | : |  |
|---|----|---|--|
|   |    |   |  |

|         |       | TABLE 1.2F: | LOAD DISTRIBUTION | RATIO AND LOAD-TO- | STRENGTH RATIO |       |
|---------|-------|-------------|-------------------|--------------------|----------------|-------|
|         | $N_s$ | $N_b$       | Load Dis          | stribution         | Load / Str     | ength |
| Model   |       |             | Screws            | Bolts              | Screws         | Bolts |
| SW 46   | 2     | 1           | 40.2%             | 59.8%              | 100.0%         | 81%   |
| SW 55   | 2     | 1           | 40.2%             | 59.8%              | 100.0%         | 81%   |
| SW 63   | 2     | 1           | 40.2%             | 59.8%              | 100.0%         | 81%   |
| SW 64   | 2     | 1           | 40.2%             | 59.8%              | 100.0%         | 81%   |
| SW 65   | 2     | 1           | 40.2%             | 59.8%              | 100.0%         | 81%   |
| SW 66   | 2     | 1           | 40.2%             | 59.8%              | 100.0%         | 81%   |
| SW 83   | 4     | 1           | 57.4%             | 42.6%              | 100.0%         | 81%   |
| SW 84   | 4     | 1           | 57.4%             | 42.6%              | 100.0%         | 81%   |
| SW 85   | 4     | 1           | 57.4%             | 42.6%              | 100.0%         | 81%   |
| SW 88   | 4     | 1           | 57.4%             | 42.6%              | 100.0%         | 81%   |
| SW 60*  | 2     | 1           | 40.2%             | 59.8%              | 100.0%         | 81%   |
| SW 80*  | 4     | 1           | 57.4%             | 42.6%              | 100.0%         | 81%   |
| SW 60C* | 3     | 0           | 100.0%            | 0.0%               | 100.0%         | 0%    |

\*Pair

| TABLE 1.2G: SHEAR S | TRENGTH OF STEEL | -TO-WOOD CONNECTION |
|---------------------|------------------|---------------------|
|                     | ASD              | LRFD                |
|                     | $V_n/\Omega$     | $\phi V_n$          |
| Model               | (lb)             | (lb)                |
| SW 46               | 2260             | 3050                |
| SW 55               | 2260             | 3050                |
| SW 63               | 2260             | 3050                |
| SW 64               | 2260             | 3050                |
| SW 65               | 2260             | 3050                |
| SW 66               | 2260             | 3050                |
| SW 83               | 3260             | 4390                |
| SW 84               | 3260             | 4390                |
| SW 85               | 3260             | 4390                |
| SW 88               | 3260             | 4390                |
| SW 60*              | 2260             | 3050                |
| SW 80*              | 3260             | 4390                |
| SW 60C              | 1210             | 1630                |
| *Pair               |                  |                     |

NOTE: SW 60C bracket is a corner post bracket that is intended to be used alone (not in pairs). These calculations assume that wall girts and other secondary will provide torsional stability to the corner column. This bracket may not be used with columns that do not have sufficient girt/secondary framing to resist torsional loads.

# 2. STURDI-WALL: SHEAR STRENGTH OF STEEL BRACKET

The calculations are presented in both the LRFD and ASD formats in accordance with the provisions of the governing code (AISC 360-16). The calculations are completed in Microsoft Excel (2016) using the listed equations.

The design (LRFD) and allowable (ASD) shear strength calculations are for vertical steel plates, horizontal steel plate, and welds.

# **GOVERNING CODE:**

Specification for Structural Steel Buildings ANSI/AISC 360-16

# **GOVERNING EQUATIONS:**

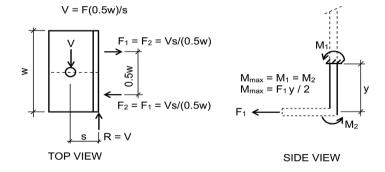
| Design Shear Strength    | $\phi V_n = \phi 0.6 F_v A_q$            | (shear yielding) | ф = 1.0  | (J4-4) |
|--------------------------|------------------------------------------|------------------|----------|--------|
| Design Shear Strength    | $\varphi V_n = \varphi 0.6 F_u A_{nv}$   | (shear rupture)  | ф = 0.75 | (J4-4) |
| Allowable Shear Strength | $V_n / \Omega = 0.6 F_v A_g / \Omega$    | (shear yielding) | Ω = 1.5  | (J4-4) |
| Allowable Shear Strength | $V_n / \Omega = 0.6 F_u A_{nv} / \Omega$ | (shear rupture)  | Ω=2      | (J4-4) |

#### • WELDS: AISC 360, SECTION J2

| Design Strength    | $\Phi R_n = \Phi F_w A_w$         | ф = 0.75        | (J2-3)    |
|--------------------|-----------------------------------|-----------------|-----------|
| Allowable Strength | $R_n / \Omega = F_w A_w / \Omega$ | $\Omega$ = 2.00 | (J2-3)    |
|                    | $F_w = 0.60F_{EXX}$               |                 | (T. J2.5) |

# **CALCULATIONS:**

| STEEL BRACKET PR                         | OPERTIE | S   | WELD PROPERTIES                                        |     |  |  |  |  |
|------------------------------------------|---------|-----|--------------------------------------------------------|-----|--|--|--|--|
| Minimum Tensile Strength, F <sub>u</sub> | 55      | ksi | Fillet Weld Leg Size 0.25                              | in  |  |  |  |  |
| Minimum Yield Strength, Fy               | 40      | ksi | Effective Weld Thickness (throat), t <sub>e</sub> 0.18 | in  |  |  |  |  |
| Thickness of steel, t                    | 0.250   | in  | Electrode Classification Number 70                     | ksi |  |  |  |  |
|                                          |         |     | Nominal Strength of Weld Metal, F <sub>w</sub> 42      | ksi |  |  |  |  |


| TA       | TABLE 2A: SHEAR STRENGTH OF STEEL PLATES AND WELDS |            |              |                    |                 |              |                    |                 |              |  |  |  |
|----------|----------------------------------------------------|------------|--------------|--------------------|-----------------|--------------|--------------------|-----------------|--------------|--|--|--|
|          | w                                                  | eld Streng | th           |                    |                 | r Strength   | of Steel F         | Plates          |              |  |  |  |
|          |                                                    |            | '            |                    | Yielding        |              | Rupture            |                 |              |  |  |  |
|          |                                                    | LRFD       | ASD          |                    | LRFD            | ASD          |                    | LRFD            | ASD          |  |  |  |
|          | $A_{w}$                                            | $\phi R_n$ | $R_n/\Omega$ | $A_g$              | фV <sub>n</sub> | $V_n/\Omega$ | $A_e$              | фV <sub>n</sub> | $V_n/\Omega$ |  |  |  |
| Model ID | (in²)                                              | (lb)       | (lb)         | (in <sup>2</sup> ) | (lb)            | (lb)         | (in <sup>2</sup> ) | (lb)            | (lb)         |  |  |  |
| SW 46    | 3.54                                               | 111353     | 74235        | 2.50               | 60000           | 40000        | 2.19               | 54203           | 36135        |  |  |  |
| SW 55    | 3.54                                               | 111510     | 74340        | 2.50               | 60000           | 40000        | 2.19               | 54203           | 36135        |  |  |  |
| SW 63    | 3.54                                               | 111510     | 74340        | 2.50               | 60000           | 40000        | 2.19               | 54203           | 36135        |  |  |  |
| SW 64    | 3.54                                               | 111353     | 74235        | 2.50               | 60000           | 40000        | 2.19               | 54203           | 36135        |  |  |  |
| SW 65    | 3.54                                               | 111510     | 74340        | 2.50               | 60000           | 40000        | 2.19               | 54203           | 36135        |  |  |  |
| SW 66    | 3.54                                               | 111353     | 74235        | 2.50               | 60000           | 40000        | 2.19               | 54203           | 36135        |  |  |  |
| SW 83    | 4.95                                               | 155894     | 103929       | 3.50               | 84000           | 56000        | 3.19               | 78953           | 52635        |  |  |  |
| SW 84    | 4.95                                               | 155894     | 103929       | 3.50               | 84000           | 56000        | 3.19               | 78953           | 52635        |  |  |  |
| SW 85    | 4.95                                               | 155894     | 103929       | 3.50               | 84000           | 56000        | 3.19               | 78953           | 52635        |  |  |  |
| SW 88    | 4.95                                               | 155894     | 103929       | 3.50               | 84000           | 56000        | 3.19               | 78953           | 52635        |  |  |  |
| SW 60*   | n/a                                                | n/a        | n/a          | 2.50               | 60000           | 40000        | 2.19               | 54203           | 36135        |  |  |  |
| SW 80*   | n/a                                                | n/a        | n/a          | 3.50               | 84000           | 56000        | 3.19               | 78953           | 52635        |  |  |  |
| SW 60C*  | n/a                                                | n/a        | n/a          | 1.00               | 24000           | 16000        | 0.92               | 22770           | 15180        |  |  |  |

\*Pair

| TAB      | TABLE 2B: SHEAR STRENGTH BASED ON TWISTING STRENGTH OF THE ANGLES |      |                 |              |        |      |            |              |  |  |
|----------|-------------------------------------------------------------------|------|-----------------|--------------|--------|------|------------|--------------|--|--|
|          |                                                                   |      |                 |              |        |      | LRFD       | ASD          |  |  |
|          | t                                                                 | w    | фM <sub>n</sub> | $M_n/\Omega$ | у      | s    | $\Phi V_n$ | $V_n/\Omega$ |  |  |
| Model ID | (in)                                                              | (in) | (in-lb)         | (in-lb)      | (in)   | (in) | (lb) pair  | (lb) pair    |  |  |
| SW 60    | 0.250                                                             | 5.00 | 1406            | 936          | 3.0000 | 2.38 | 1970       | 1310         |  |  |
| SW 80    | 0.250                                                             | 7.00 | 1969            | 1310         | 3.5000 | 2.38 | 3320       | 2210         |  |  |
| SW 60C   | 0.250                                                             | 4.00 | 1125            | 749          | 3.5000 | 2.38 | 1080       | 720          |  |  |

y = moment arm: distance from center of 1st bolt to center of short steel leg  $\phi M_n$  = design bending strength of 1/2 of the steel angle

 $M_n$  /  $\Omega$  = allowable bending strength of 1/2 of the steel angle



# 3. STURDI-WALL: SHEAR STRENGTH OF ANCHORS

The calculations are presented in both the LRFD and ASD formats in accordance with the provisions of the governing codes (AISC 360-16 and ACI 318-14). The calculations include (1) shear strength of steel anchors and (2) concrete prying or breakout forces. The shear strength of steel anchors is covered in both ACI 318 and AISC 360 standards. It is desirable to present the results in terms of ASD and LRFD design, therefore, AISC 360, which includes both methods, is used for steel anchor design calculations. The breakout calculations are completed using the LRFD method per ACI 318 and are converted to the ASD levels using the conversion factor,  $\alpha = 1.6$ . The calculations are completed in Microsoft Excel (2016) using the listed equations.

# **GOVERNING CODE:**

Specification for Structural Steel Buildings ANSI/AISC 360-16 Building Code Requirements for Structural Concrete ACI 318-14

# **GOVERNING EQUATIONS:**

• BOLTS (ANCHORS): AISC 360, SECTION J3

| Design Strength    | $\Phi R_n N_b = \Phi N_b F_{nv} A_b$         | ф = 0.75        | (J3-1) |
|--------------------|----------------------------------------------|-----------------|--------|
| Allowable Strength | $R_n N_b / \Omega = N_b F_{nv} A_b / \Omega$ | $\Omega$ = 2.00 | (J3-1) |

N<sub>b</sub> = number of bolts

• ANCHORS (CONCRETE BREAKOUT): ACI 318, 17.5.2.1

| Design Strength    | $\varphi V_{cbg} = \varphi (A_{Vc} / A_{Vco}) \Psi_{ec,V} \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_b$ | ф = 0.70       | (17.5.2.1b) |
|--------------------|--------------------------------------------------------------------------------------------------|----------------|-------------|
| Allowable Strength | $V_{\rm cbg}/\Omega = \varphi V_{\rm cbg} / \alpha$                                              | $\alpha = 1.6$ |             |

# **CALCULATIONS:**

| ANCHOR PROP                           | PERTIES      | CONCRETE PRO              | CONCRETE PROPERTIES |  |  |  |  |
|---------------------------------------|--------------|---------------------------|---------------------|--|--|--|--|
| Nominal Shear Stress, F <sub>nv</sub> | 24 ksi       | Compressive Strength, f'c | 3 ksi               |  |  |  |  |
|                                       | (or greater) |                           | (or greater)        |  |  |  |  |

| TABLE 3A: SHEAR STRENGTH OF ANCHORS |                |                           |       |                |                    |                |                    |  |  |
|-------------------------------------|----------------|---------------------------|-------|----------------|--------------------|----------------|--------------------|--|--|
|                                     |                | Shear Strength of Anchors |       |                |                    |                |                    |  |  |
|                                     |                | 1/2"                      | 5/8"  | 1/             | 2"                 | 5/8"           |                    |  |  |
|                                     | N <sub>b</sub> |                           |       | LRFD           | ASD                | LRFD           | ASD                |  |  |
|                                     |                | $A_b$                     | $A_b$ | $\phi R_n N_b$ | $R_n N_b / \Omega$ | $\phi R_n N_b$ | $R_n N_b / \Omega$ |  |  |
| Model ID                            |                | (in²)                     | (in²) | (lbf)          | (lbf)              | (lbf)          | (lbf)              |  |  |
| SW 46                               | 2              | 0.20                      | 0.31  | 7069           | 4712               | 11045          | 7363               |  |  |
| SW 55                               | 2              | 0.20                      | 0.31  | 7069           | 4712               | 11045          | 7363               |  |  |
| SW 63                               | 2              | 0.20                      | 0.31  | 7069           | 4712               | 11045          | 7363               |  |  |
| SW 64                               | 2              | 0.20                      | 0.31  | 7069           | 4712               | 11045          | 7363               |  |  |
| SW 65                               | 2              | 0.20                      | 0.31  | 7069           | 4712               | 11045          | 7363               |  |  |
| SW 66                               | 2              | 0.20                      | 0.31  | 7069           | 4712               | 11045          | 7363               |  |  |
| SW 83                               | 2              | 0.20                      | 0.31  | 7069           | 4712               | 11045          | 7363               |  |  |
| SW 84                               | 2              | 0.20                      | 0.31  | 7069           | 4712               | 11045          | 7363               |  |  |
| SW 85                               | 2              | 0.20                      | 0.31  | 7069           | 4712               | 11045          | 7363               |  |  |
| SW 88                               | 2              | 0.20                      | 0.31  | 7069           | 4712               | 11045          | 7363               |  |  |
| SW 60*                              | 2              | 0.20                      | 0.31  | 7069           | 4712               | 11045          | 7363               |  |  |
| SW 80*                              | 2              | 0.20                      | 0.31  | 7069           | 4712               | 11045          | 7363               |  |  |
| SW 60C*                             | 2              | 0.20                      | 0.31  | 7069           | 4712               | 11045          | 7363               |  |  |

\*Pair

|          | TABLE 3B: SHEAR STRENGTH OF ANCHORS: CONCRETE BREAKOUT |        |          |           |     |                   |       |       |                |                  |                |                  |
|----------|--------------------------------------------------------|--------|----------|-----------|-----|-------------------|-------|-------|----------------|------------------|----------------|------------------|
|          |                                                        |        |          |           |     |                   | 1/2"  | 5/8"  | 1/2            | 2"               | 5/             | 8"               |
|          |                                                        |        |          |           |     |                   |       |       | LRFD           | ASD              | LRFD           | ASD              |
|          | C <sub>a1</sub>                                        | S₁     | $A_{Vc}$ | $A_{Vco}$ | Ψ   | $\mathbf{h}_{ef}$ | $V_b$ | $V_b$ | $\phi V_{cbg}$ | $V_{cbg}/\Omega$ | $\phi V_{cbg}$ | $V_{cbg}/\Omega$ |
| Model ID | (in)                                                   | (in)   | (in²)    | (in²)     |     | (in)              | (lb)  | (lb)  | (lb)           | (lb)             | (lb)           | (lb)             |
| SW 46    | 4.0                                                    | 9.375  | 128.3    | 72.0      | 1.0 | 4.3               | 3335  | 3566  | 4159           | 2599             | 4447           | 2779             |
| SW 55    | 4.0                                                    | 9.375  | 128.3    | 72.0      | 1.0 | 4.3               | 3335  | 3566  | 4159           | 2599             | 4447           | 2779             |
| SW 63    | 4.0                                                    | 9.375  | 128.3    | 72.0      | 1.0 | 4.3               | 3335  | 3566  | 4159           | 2599             | 4447           | 2779             |
| SW 64    | 4.0                                                    | 10.875 | 137.3    | 72.0      | 1.0 | 4.3               | 3335  | 3566  | 4451           | 2782             | 4759           | 2974             |
| SW 65    | 4.0                                                    | 12.375 | 144.0    | 72.0      | 1.0 | 4.3               | 3335  | 3566  | 4669           | 2918             | 4993           | 3120             |
| SW 66    | 4.0                                                    | 10.875 | 137.3    | 72.0      | 1.0 | 4.3               | 3335  | 3566  | 4451           | 2782             | 4759           | 2974             |
| SW 83    | 5.0                                                    | 9.375  | 182.8    | 112.5     | 1.0 | 4.3               | 4661  | 4984  | 5302           | 3314             | 5669           | 3543             |
| SW 84    | 5.0                                                    | 10.875 | 194.1    | 112.5     | 1.0 | 4.3               | 4661  | 4984  | 5628           | 3518             | 6018           | 3761             |
| SW 85    | 5.0                                                    | 12.375 | 205.3    | 112.5     | 1.0 | 4.3               | 4661  | 4984  | 5955           | 3722             | 6367           | 3979             |
| SW 88    | 5.0                                                    | 12.875 | 209.1    | 112.5     | 1.0 | 4.3               | 4661  | 4984  | 6063           | 3790             | 6483           | 4052             |
| SW 60    | 4.0                                                    | 9.375  | 128.3    | 72.0      | 1.0 | 4.3               | 3335  | 3566  | 4159           | 2599             | 4447           | 2779             |
| SW 80    | 5.0                                                    | 9.375  | 182.8    | 112.5     | 1.0 | 4.3               | 4661  | 4984  | 5302           | 3314             | 5669           | 3543             |
| SW 60C   | 4.0                                                    | 0.000  | 72.0     | 72.0      | 1.0 | 4.3               | 3335  | 3566  | 2335           | 1459             | 2496           | 1560             |

- (1) SW 60, SW 60C and SW 80 angles are to be used in pairs
- (2)  $c_{a1}$  = distance from center of anchor to edge of concrete
- (3)  $S_1$  = spacing between anchors
- (4)  $\Psi_{ec,V} \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} = 1.0$ , higher values possible if concrete is properly reinforced around the anchors
- (5)  $h_{ef}$  is based on 6 in anchor, 5.75" embedment into the concrete
- (6)  $c_{a1}$ ,  $S_1$ ,  $A_{Vc}$ ,  $A_{Vco}$ ,  $\Psi$ , hef,  $V_b$ ,  $V_{cbg}$  as defined in ACI 318.

# 4.1. STURDI-WALL: UPLIFT (TENSION) STRENGTH OF THE STEEL-TO-WOOD CONNECTION\* \*WITH SDS SCREWS BY SIMPSON STRONG TIE

The calculations are presented in both the LRFD and ASD formats in accordance with provisions of the governing code (NDS 2015). The calculations are completed in Microsoft Excel (2016) using the listed equations.

The load on each fastener type (screw, bolt) is proportional to the ratio of the slip-modulus of the fastener type to the cumulative slip-modulus all fasteners:  $N_s k_s / k_g$ ,  $N_b k_b / k_g$ , where  $N_s$  is the quantity of screws per bracket,  $N_b$  is the quantity of bolts in double shear per bracket,  $k_s$  is the slip-modulus of one screw in single shear,  $k_b$  is the slip-modulus of one bolt in double shear, and  $k_g$  is the cumulative slip-modulus of all fasteners (Tables 4C). The slip-modulus of screw fasteners does not equal the slip modulus of bolt fastener:  $N_s k_s \neq N_b k_b$ . As a result, one fastener type is loaded to the maximum allowable or design lateral strength, while the second fastener type receives the balance of the load which will not reach the fastener's maximum capacity (Table 4E). The discussion and calculations for slip-modulus are provided in Section 1.

Table 4D shows the uplift strength of the SW steel brackets based on the lateral (shear) strength of the steel-to-wood connection.

# **GOVERNING CODE:**

National Design Specification for Wood Construction, NDS (2015)

# **GOVERNING EQUATIONS:**

| Allowable Lateral Strength of Screws  | $Z'_s$ , ASD $N_s = N_s Z C_D C_\Delta$                 | NDS Table 11.3.1 |
|---------------------------------------|---------------------------------------------------------|------------------|
| Design Lateral Strength of Screws     | $Z'_{s, LRFD} N_s = \phi N_s Z \lambda C_{\Delta} K_F$  | NDS Table 11.3.1 |
| Allowable Lateral Strength of Bolt(s) | $Z'_{b, ASD} N_b = N_b Z C_D C_\Delta$                  | NDS Table 11.3.1 |
| Design Lateral Strength of Bolt(s)    | $Z'_{b, LRFD} N_b = \varphi N_b Z \lambda C_\Delta K_F$ | NDS Table 11.3.1 |

| Z = Unadjusted reference lateral (shear) design value for one fastener<br>Z' = Adjusted lateral design value for one fastener | NDS Table 12.3.1A<br>NDS Table 11.3.1 |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| C <sub>D</sub> = ASD load duration factor                                                                                     | NDS Table 2.3.2                       |
| $C_{\Delta}$ = Geometry factor                                                                                                | NDS 12.5.1                            |
| N = total quantity of fasteners in the group                                                                                  |                                       |
| φ = LRFD resistance factor                                                                                                    | NDS Table N2                          |
| λ = LRFD time effect factor                                                                                                   | NDS Table N3                          |
| K <sub>F</sub> = ASD to LRFD format conversion factor                                                                         | NDS Table N1                          |
| Subscript "s" = screws                                                                                                        |                                       |
| Subscript "b" = bolts                                                                                                         |                                       |

| Allowable Uplift Strength of Steel-to-Wood Connection | $T_n/\Omega = min [Z'_{s, ASD}(k_g/k_s), Z'_{b, ASD}(k_g/k_b)]$                                              |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Design Uplift Strength of Steel-to-Wood Connection    | $\phi T_n = min \left[ Z'_{s, LRFD} \left( k_g / k_s \right), Z'_{b, LRFD} \left( k_g / k_b \right) \right]$ |

# **CALCULATIONS**:

TABLE 4.1A: ADJUSTED LATERAL DESIGN VALUE OF ONE SCREW: NDS Table 12.3.1A

|                                                    |                                  | SDS   | F <sub>yb</sub>                      | 164000                  | 1+R <sub>e</sub>   | 1.1         | θ              | 0         |      |
|----------------------------------------------------|----------------------------------|-------|--------------------------------------|-------------------------|--------------------|-------------|----------------|-----------|------|
| Screw Diameter (in)                                | D                                | 0.242 | $F_{\it em,par}$                     | 5526                    | $2+R_e$            | 2.1         | I <sub>m</sub> | 1259.3    |      |
| Screw Length (in)                                  | L                                | 3     | $F_{\it em, perp}$                   | 5526                    | k <sub>1</sub>     | 0.408       | 1,             | 1280.4    |      |
| Thickness of Steel Plate Member (in)               | $I_s$                            | 0.25  | $F_{\it em}$                         | 5526                    | k 2                | 0.536       | II             | 522.4     |      |
| Thickness of Wood Member (in)                      | $I_{m}$                          | 4.5   | $R_{e}$                              | 0.089                   | <b>k</b> 3         | 6.944       | III m          | 572.7     |      |
| Screw Penetration into main member (in)            | р                                | 2.75  | $R_t$                                | 11.000                  | $F_{\it es, par}$  | 61800       | III s          | 380.5     |      |
| Minimum Allowed Penetration, p <sub>min</sub> = 6D | $p_{min}$                        | 1.5   | $K_o$                                | 2.920                   | $F_{\it es, perp}$ |             | IV             | 472.3     |      |
| Specific Gravity of Wood Member                    | G                                | 0.55  | р                                    | 2.8                     | F <sub>es</sub>    | 61800       | $D_r$          | 0.242     |      |
| Lateral Design Value (lbs)                         | Z                                | 380   |                                      | LRFD resis              | stance facto       | or          |                | ф         | 0.65 |
| ASD Load Duration Factor                           | $C_D$                            | 1.6   |                                      | LRFD time effect factor |                    |             |                |           | 1    |
| Geometry Factor                                    | $C_{\scriptscriptstyle{\Delta}}$ | 1     | ASD to LRFD format conversion factor |                         |                    |             |                | $K_{F}$   | 3.32 |
| ASD Adjusted Lateral Design Value (lbs)            | Z's, ASD                         | 609   |                                      | LRFD Adju               | sted Latera        | al Design \ | /alue (lbs)    | Z's, LRFD | 821  |

| TARIE / 1R. | AD HISTED I ATERAL | DESIGN VALUE OF ONE BO   | I T (DOUBLE SHEAR). | NDS Table 12 3 1A  |
|-------------|--------------------|--------------------------|---------------------|--------------------|
| IADLE 4.ID. | ADJUSTED LATERAL   | . DESIGN VALUE OF ONE DU | JLI (DUUDLE SHEAK). | NUO TADIE IZ.3. IA |

| Bolt Diameter (in)                      | D                                | 0.5    | $F_{\text{em, par}}$    | 6160       | $K_{\theta}$ | 1.000      | $I_{m}$    | 3465                  |      |
|-----------------------------------------|----------------------------------|--------|-------------------------|------------|--------------|------------|------------|-----------------------|------|
| Main Member Thickness (in)              | $t_{\text{m, min}}$              | 4.5    | $F_{em, perp}$          | 3626       | $1+R_e$      | 1.071      | $III_s$    | 2369                  |      |
| Side Member Thickness (in)              | $t_s$                            | 0.25   | $F_{em}$                | 6160       | $2+R_e$      | 2.071      | IV         | 3150                  |      |
| Dowel Bearing Strength (psi)            | $F_{es}$                         | 87000  | $R_{\rm e}$             | 0.071      | $k_3$        | 10.192     |            |                       |      |
| Bolt Yield Strength (psi)               | $F_{yb}$                         | 106000 |                         |            |              |            |            |                       |      |
| Max Angle Load to Grain (deg)           | θ                                | 0      |                         |            |              |            |            |                       |      |
| Specific Gravity                        | G                                | 0.55   |                         |            |              |            |            |                       |      |
| Reference Lateral Design Value (Z)      | Z                                | 2369   | l                       | RFD resis  | tance facto  | r          |            | ф                     | 0.65 |
| ASD Load Duration Factor                | $C_D$                            | 1.6    | LRFD time effect factor |            |              |            | λ          | 1                     |      |
| Geometry Factor                         | $C_{\scriptscriptstyle{\Delta}}$ | 1      | 1                       | ASD to LRF | D format o   | conversion | factor     | $K_{F}$               | 3.32 |
| ASD Adjusted Lateral Design Value (lbs) | Z' <sub>b, ASD</sub>             | 3790   | l                       | .RFD Adjus | sted Latera  | l Design V | alue (lbs) | Z' <sub>b. LRFD</sub> | 5112 |

| TABLE   | TABLE 4.1C: FASTENER SLIP-MODULUS |                |                |                |                |  |  |  |  |  |  |
|---------|-----------------------------------|----------------|----------------|----------------|----------------|--|--|--|--|--|--|
|         | k <sub>s</sub>                    | k <sub>b</sub> | N <sub>s</sub> | N <sub>b</sub> | k <sub>g</sub> |  |  |  |  |  |  |
| Model   | (lb/in)                           | (lb/in)        |                |                | (lb/in)        |  |  |  |  |  |  |
| SW 46   | 32143                             | 95459          | 4              | 2              | 319491         |  |  |  |  |  |  |
| SW 55   | 32143                             | 95459          | 4              | 2              | 319491         |  |  |  |  |  |  |
| SW 63   | 32143                             | 95459          | 4              | 2              | 319491         |  |  |  |  |  |  |
| SW 64   | 32143                             | 95459          | 4              | 2              | 319491         |  |  |  |  |  |  |
| SW 65   | 32143                             | 95459          | 4              | 2              | 319491         |  |  |  |  |  |  |
| SW 66   | 32143                             | 95459          | 4              | 2              | 319491         |  |  |  |  |  |  |
| SW 83   | 32143                             | 95459          | 8              | 2              | 448063         |  |  |  |  |  |  |
| SW 84   | 32143                             | 95459          | 8              | 2              | 448063         |  |  |  |  |  |  |
| SW 85   | 32143                             | 95459          | 8              | 2              | 448063         |  |  |  |  |  |  |
| SW 88   | 32143                             | 95459          | 8              | 2              | 448063         |  |  |  |  |  |  |
| SW 60*  | 32143                             | 95459          | 4              | 2              | 319491         |  |  |  |  |  |  |
| SW 80*  | 32143                             | 95459          | 8              | 2              | 448063         |  |  |  |  |  |  |
| SW 60C* | 32143                             | n/a            | 12             | 0              | 385716         |  |  |  |  |  |  |

\*Pair

|         | TABLE 4.1D: TENSILE STRENGTH BASED ON STEEL-TO-WOOD CONNECTION |                         |                          |                          |              |            |  |  |
|---------|----------------------------------------------------------------|-------------------------|--------------------------|--------------------------|--------------|------------|--|--|
|         |                                                                |                         |                          |                          | ASD          | LRFD       |  |  |
|         | $Z'_{s, ASD} (k_g/k_s)$                                        | $Z'_{b, ASD} (k_g/k_b)$ | $Z'_{s, LRFD} (k_g/k_s)$ | $Z'_{b, LRFD} (k_g/k_b)$ | $T_n/\Omega$ | $\phi T_n$ |  |  |
| Model   | (lb)                                                           | (lb)                    | (lb)                     | (lb)                     | (lb)         | (lb)       |  |  |
| SW 46   | 6051                                                           | 12684                   | 8161                     | 17108                    | 6050         | 8160       |  |  |
| SW 55   | 6051                                                           | 12684                   | 8161                     | 17108                    | 6050         | 8160       |  |  |
| SW 63   | 6051                                                           | 12684                   | 8161                     | 17108                    | 6050         | 8160       |  |  |
| SW 64   | 6051                                                           | 12684                   | 8161                     | 17108                    | 6050         | 8160       |  |  |
| SW 65   | 6051                                                           | 12684                   | 8161                     | 17108                    | 6050         | 8160       |  |  |
| SW 66   | 6051                                                           | 12684                   | 8161                     | 17108                    | 6050         | 8160       |  |  |
| SW 83   | 8486                                                           | 17789                   | 11446                    | 23993                    | 8490         | 11450      |  |  |
| SW 84   | 8486                                                           | 17789                   | 11446                    | 23993                    | 8490         | 11450      |  |  |
| SW 85   | 8486                                                           | 17789                   | 11446                    | 23993                    | 8490         | 11450      |  |  |
| SW 88   | 8486                                                           | 17789                   | 11446                    | 23993                    | 8490         | 11450      |  |  |
| SW 60*  | 6051                                                           | 12684                   | 8161                     | 17108                    | 6050         | 8160       |  |  |
| SW 80*  | 8486                                                           | 17789                   | 11446                    | 23993                    | 8490         | 11450      |  |  |
| SW 60C* | 7305                                                           | n/a                     | 9853                     | n/a                      | 7310         | 9850       |  |  |

\*Pair

| TABLE 4.1E: LOAD DISTRIBUTION RATIO AND LOAD-TO-STRENGTH RATIO |          |            |                 |       |  |  |  |
|----------------------------------------------------------------|----------|------------|-----------------|-------|--|--|--|
|                                                                | Load Dis | stribution | Load / Strength |       |  |  |  |
| Model                                                          | Screws   | Bolts      | Screws          | Bolts |  |  |  |
| SW 46                                                          | 40.2%    | 59.8%      | 100%            | 48%   |  |  |  |
| SW 55                                                          | 40.2%    | 59.8%      | 100%            | 48%   |  |  |  |
| SW 63                                                          | 40.2%    | 59.8%      | 100%            | 48%   |  |  |  |
| SW 64                                                          | 40.2%    | 59.8%      | 100%            | 48%   |  |  |  |
| SW 65                                                          | 40.2%    | 59.8%      | 100%            | 48%   |  |  |  |
| SW 66                                                          | 40.2%    | 59.8%      | 100%            | 48%   |  |  |  |
| SW 83                                                          | 57.4%    | 42.6%      | 100%            | 48%   |  |  |  |
| SW 84                                                          | 57.4%    | 42.6%      | 100%            | 48%   |  |  |  |
| SW 85                                                          | 57.4%    | 42.6%      | 100%            | 48%   |  |  |  |
| SW 88                                                          | 57.4%    | 42.6%      | 100%            | 48%   |  |  |  |
| SW 60*                                                         | 40.2%    | 59.8%      | 100%            | 48%   |  |  |  |
| SW 80*                                                         | 57.4%    | 42.6%      | 100%            | 48%   |  |  |  |
| SW 60C*                                                        | 100.0%   | 0.0%       | 100%            | 0%    |  |  |  |

\*Pair

# 4.2. STURDI-WALL: UPLIFT (TENSION) STRENGTH OF THE STEEL-TO-WOOD CONNECTION\* \*WITH PROPRIETARY SCREWS

The calculations are presented in both the LRFD and ASD formats in accordance with provisions of the governing code (NDS 2015). The calculations are completed in Microsoft Excel (2016) using the listed equations.

The load on each fastener type (screw, bolt) is proportional to the ratio of the slip-modulus of the fastener type to the cumulative slip-modulus all fasteners:  $N_s k_s / k_g$ ,  $N_b k_b / k_g$ , where  $N_s$  is the quantity of screws per bracket,  $N_b$  is the quantity of bolts in double shear per bracket,  $k_s$  is the slip-modulus of one screw in single shear,  $k_b$  is the slip-modulus of one bolt in double shear, and  $k_g$  is the cumulative slip-modulus of all fasteners (Tables 4C). The slip-modulus of screw fasteners does not equal the slip modulus of bolt fastener:  $N_s k_s \neq N_b k_b$ . As a result, one fastener type is loaded to the maximum allowable or design lateral strength, while the second fastener type receives the balance of the load which will not reach the fastener's maximum capacity (Table 4E). The discussion and calculations for slip-modulus are provided in Section 1.

Table 4D shows the uplift strength of the SW steel brackets based on the lateral (shear) strength of the steel-to-wood connection.

# **GOVERNING CODE:**

National Design Specification for Wood Construction, NDS (2015)

# **GOVERNING EQUATIONS:**

| Allowable Lateral Strength of Screws  | $Z'_s$ , ASD $N_s = N_s Z C_D C_\Delta$                 | NDS Table 11.3.1 |
|---------------------------------------|---------------------------------------------------------|------------------|
| Design Lateral Strength of Screws     | $Z'_{s, LRFD} N_s = \phi N_s Z \lambda C_{\Delta} K_F$  | NDS Table 11.3.1 |
| Allowable Lateral Strength of Bolt(s) | $Z'_{b, ASD} N_b = N_b Z C_D C_\Delta$                  | NDS Table 11.3.1 |
| Design Lateral Strength of Bolt(s)    | $Z'_{b, LRFD} N_b = \varphi N_b Z \lambda C_\Delta K_F$ | NDS Table 11.3.1 |

| Z = Unadjusted reference lateral (shear) design value for one fastener<br>Z' = Adjusted lateral design value for one fastener | NDS Table 12.3.1A<br>NDS Table 11.3.1 |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| C <sub>D</sub> = ASD load duration factor                                                                                     | NDS Table 2.3.2                       |
| $C_{\Delta}$ = Geometry factor                                                                                                | NDS 12.5.1                            |
| N = total quantity of fasteners in the group                                                                                  |                                       |
| φ = LRFD resistance factor                                                                                                    | NDS Table N2                          |
| λ = LRFD time effect factor                                                                                                   | NDS Table N3                          |
| K <sub>F</sub> = ASD to LRFD format conversion factor                                                                         | NDS Table N1                          |
| Subscript "s" = screws                                                                                                        |                                       |
| Subscript "b" = bolts                                                                                                         |                                       |

| Allowable Uplift Strength of Steel-to-Wood Connection | $T_n/\Omega = min [Z'_{s, ASD}(k_g/k_s), Z'_{b, ASD}(k_g/k_b)]$                                               |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Design Uplift Strength of Steel-to-Wood Connection    | $\Phi T_n = \min \left[ Z'_{s, LRFD} \left( k_g / k_s \right), Z'_{b, LRFD} \left( k_g / k_b \right) \right]$ |

# **CALCULATIONS**:

TABLE 4.2A: ADJUSTED LATERAL DESIGN VALUE OF ONE SCREW: NDS Table 12.3.1A

|                                                    |                                  |       | F yb                                     | 199000 | 1+R <sub>e</sub>   | 1.1       | θ              | 0      |  |
|----------------------------------------------------|----------------------------------|-------|------------------------------------------|--------|--------------------|-----------|----------------|--------|--|
| Screw Diameter (in)                                | D                                | 0.243 | F <sub>em, par</sub>                     | 5526   | $2+R_e$            | 2.1       | I <sub>m</sub> | 1260.2 |  |
| Screw Length (in)                                  | L                                | 3     | $F_{\it em, perp}$                       |        | k 1                | 0.408     | Is             | 1281.3 |  |
| Thickness of Steel Plate Member (in)               | $I_s$                            | 0.25  | $F_{\it em}$                             | 5526   | k <sub>2</sub>     | 0.549     | II             | 522.7  |  |
| Thickness of Wood Member (in)                      | $I_{m}$                          | 4.5   | $R_{e}$                                  | 0.089  | <b>k</b> 3         | 7.471     | III m          | 587.1  |  |
| Screw Penetration into main member (in)            | р                                | 2.75  | $R_t$                                    | 11.000 | $F_{\it es, par}$  | 61800     | III s          | 409.7  |  |
| Minimum Allowed Penetration, p <sub>min</sub> = 6D | $p_{min}$                        | 1.5   | $K_o$                                    | 2.930  | $F_{\it es, perp}$ |           | IV             | 522.8  |  |
| Specific Gravity of Wood Member                    | G                                | 0.55  | р                                        | 2.8    | F <sub>es</sub>    | 61800     | $D_r$          | 0.243  |  |
| Lateral Design Value (lbs)                         | Z                                | 410   | LRFD resistance factor                   |        |                    | ф         | 0.65           |        |  |
| ASD Load Duration Factor                           | $C_D$                            | 1.6   | LRFD time effect factor                  |        |                    | λ         | 1              |        |  |
| Geometry Factor                                    | $C_{\scriptscriptstyle{\Delta}}$ | 1     | ASD to LRFD format conversion factor     |        |                    | $K_{F}$   | 3.32           |        |  |
| ASD Adjusted Lateral Design Value (lbs)            | Z's, ASD                         | 655   | LRFD Adjusted Lateral Design Value (lbs) |        |                    | Z's, LRFD | 884            |        |  |

| TABLE 12B.  | VU IIICTEU I VLEDVI | DESIGN VALUE OF ONE B   | OLT (DOLIBLE SHEAD). | NDS Table 12 2 1A  |
|-------------|---------------------|-------------------------|----------------------|--------------------|
| IADLE 4.ZD. | ADJUSTED LATERAL    | . DESIGN VALUE OF ONE D | ULI IDUUDLE SHEAKI.  | NUO TADIE IZ.S. IA |

| Bolt Diameter (in)                      | D                                | 0.5    | $F_{\text{em, par}}$                          | 6160      | $K_{\theta}$ | 1.000                 | I <sub>m</sub> | 3465 |      |
|-----------------------------------------|----------------------------------|--------|-----------------------------------------------|-----------|--------------|-----------------------|----------------|------|------|
| Main Member Thickness (in)              | $t_{\text{m, min}}$              | 4.5    | $F_{em, perp}$                                | 3626      | $1+R_e$      | 1.071                 | $III_s$        | 2369 |      |
| Side Member Thickness (in)              | $t_s$                            | 0.25   | $F_{em}$                                      | 6160      | $2+R_e$      | 2.071                 | IV             | 3150 |      |
| Dowel Bearing Strength (psi)            | $F_{es}$                         | 87000  | $R_{e}$                                       | 0.071     | $k_3$        | 10.192                |                |      |      |
| Bolt Yield Strength (psi)               | $F_{yb}$                         | 106000 |                                               |           |              |                       |                |      |      |
| Max Angle Load to Grain (deg)           | θ                                | 0      |                                               |           |              |                       |                |      |      |
| Specific Gravity                        | G                                | 0.55   |                                               |           |              |                       |                |      |      |
| Reference Lateral Design Value (Z)      | Z                                | 2369   | l                                             | RFD resis | tance facto  | r                     |                | ф    | 0.65 |
| ASD Load Duration Factor                | $C_D$                            | 1.6    | LRFD time effect factor                       |           |              | λ                     | 1              |      |      |
| Geometry Factor                         | $C_{\scriptscriptstyle{\Delta}}$ | 1      | ASD to LRFD format conversion factor          |           |              | factor                | $K_{F}$        | 3.32 |      |
| ASD Adjusted Lateral Design Value (lbs) | Z' <sub>b. ASD</sub>             | 3790   | 3790 LRFD Adjusted Lateral Design Value (lbs) |           | alue (lbs)   | Z' <sub>b. LRFD</sub> | 5112           |      |      |

| TABLE 4.2C: FASTENER SLIP-MODULUS |                |                |                |                |                |  |  |  |
|-----------------------------------|----------------|----------------|----------------|----------------|----------------|--|--|--|
|                                   | k <sub>s</sub> | k <sub>b</sub> | N <sub>s</sub> | N <sub>b</sub> | k <sub>g</sub> |  |  |  |
| Model                             | (lb/in)        | (lb/in)        |                |                | (lb/in)        |  |  |  |
| SW 46                             | 32143          | 95459          | 4              | 2              | 319491         |  |  |  |
| SW 55                             | 32143          | 95459          | 4              | 2              | 319491         |  |  |  |
| SW 63                             | 32143          | 95459          | 4              | 2              | 319491         |  |  |  |
| SW 64                             | 32143          | 95459          | 4              | 2              | 319491         |  |  |  |
| SW 65                             | 32143          | 95459          | 4              | 2              | 319491         |  |  |  |
| SW 66                             | 32143          | 95459          | 4              | 2              | 319491         |  |  |  |
| SW 83                             | 32143          | 95459          | 8              | 2              | 448063         |  |  |  |
| SW 84                             | 32143          | 95459          | 8              | 2              | 448063         |  |  |  |
| SW 85                             | 32143          | 95459          | 8              | 2              | 448063         |  |  |  |
| SW 88                             | 32143          | 95459          | 8              | 2              | 448063         |  |  |  |
| SW 60*                            | 32143          | 95459          | 4              | 2              | 319491         |  |  |  |
| SW 80*                            | 32143          | 95459          | 8              | 2              | 448063         |  |  |  |
| SW 60C*                           | 32143          | n/a            | 12             | 0              | 385716         |  |  |  |

\*Pair

|         | TABLE 4.2D: TENSILE STRENGTH BASED ON STEEL-TO-WOOD CONNECTION |                         |                          |                          |              |            |  |  |
|---------|----------------------------------------------------------------|-------------------------|--------------------------|--------------------------|--------------|------------|--|--|
|         |                                                                |                         |                          |                          | ASD          | LRFD       |  |  |
|         | $Z'_{s, ASD} (k_g/k_s)$                                        | $Z'_{b, ASD} (k_g/k_b)$ | $Z'_{s, LRFD} (k_g/k_s)$ | $Z'_{b, LRFD} (k_g/k_b)$ | $T_n/\Omega$ | $\phi T_n$ |  |  |
| Model   | (lb)                                                           | (lb)                    | (lb)                     | (lb)                     | (lb)         | (lb)       |  |  |
| SW 46   | 6515                                                           | 12684                   | 8787                     | 17108                    | 6520         | 8790       |  |  |
| SW 55   | 6515                                                           | 12684                   | 8787                     | 17108                    | 6520         | 8790       |  |  |
| SW 63   | 6515                                                           | 12684                   | 8787                     | 17108                    | 6520         | 8790       |  |  |
| SW 64   | 6515                                                           | 12684                   | 8787                     | 17108                    | 6520         | 8790       |  |  |
| SW 65   | 6515                                                           | 12684                   | 8787                     | 17108                    | 6520         | 8790       |  |  |
| SW 66   | 6515                                                           | 12684                   | 8787                     | 17108                    | 6520         | 8790       |  |  |
| SW 83   | 9137                                                           | 17789                   | 12324                    | 23993                    | 9140         | 12320      |  |  |
| SW 84   | 9137                                                           | 17789                   | 12324                    | 23993                    | 9140         | 12320      |  |  |
| SW 85   | 9137                                                           | 17789                   | 12324                    | 23993                    | 9140         | 12320      |  |  |
| SW 88   | 9137                                                           | 17789                   | 12324                    | 23993                    | 9140         | 12320      |  |  |
| SW 60*  | 6515                                                           | 12684                   | 8787                     | 17108                    | 6520         | 8790       |  |  |
| SW 80*  | 9137                                                           | 17789                   | 12324                    | 23993                    | 9140         | 12320      |  |  |
| SW 60C* | 7866                                                           | n/a                     | 10609                    | n/a                      | 7870         | 10610      |  |  |

\*Pair

| TABLE 4.2E: LOAD DISTRIBUTION RATIO AND LOAD-TO-STRENGTH RATIO |          |            |                 |       |  |  |  |
|----------------------------------------------------------------|----------|------------|-----------------|-------|--|--|--|
|                                                                | Load Dis | stribution | Load / Strength |       |  |  |  |
| Model                                                          | Screws   | Bolts      | Screws          | Bolts |  |  |  |
| SW 46                                                          | 40.2%    | 59.8%      | 100%            | 51%   |  |  |  |
| SW 55                                                          | 40.2%    | 59.8%      | 100%            | 51%   |  |  |  |
| SW 63                                                          | 40.2%    | 59.8%      | 100%            | 51%   |  |  |  |
| SW 64                                                          | 40.2%    | 59.8%      | 100%            | 51%   |  |  |  |
| SW 65                                                          | 40.2%    | 59.8%      | 100%            | 51%   |  |  |  |
| SW 66                                                          | 40.2%    | 59.8%      | 100%            | 51%   |  |  |  |
| SW 83                                                          | 57.4%    | 42.6%      | 100%            | 51%   |  |  |  |
| SW 84                                                          | 57.4%    | 42.6%      | 100%            | 51%   |  |  |  |
| SW 85                                                          | 57.4%    | 42.6%      | 100%            | 51%   |  |  |  |
| SW 88                                                          | 57.4%    | 42.6%      | 100%            | 51%   |  |  |  |
| SW 60*                                                         | 40.2%    | 59.8%      | 100%            | 51%   |  |  |  |
| SW 80*                                                         | 57.4%    | 42.6%      | 100%            | 51%   |  |  |  |
| SW 60C*                                                        | 100.0%   | 0.0%       | 100%            | 0%    |  |  |  |

\*Pair

# 5. STURDI-WALL: UPLIFT STRENGTH BASED ON TENSILE AND BENDING STRENGTH OF STEEL BRACKET

The calculations are presented in both the LRFD and ASD formats in accordance with the provisions of the governing code (AISC 360-16). The calculations are completed in Microsoft Excel (2016) using the listed equations. The distribution of internal moments in the steel bracket is determined using a two-dimensional computer model in Visual Analysis by IES, see footnotes for Table 4D.

# **GOVERNING CODE:**

Specification for Structural Steel Buildings ANSI/AISC 360-10

# **GOVERNING EQUATIONS:**

#### • STEEL BRACKET: AISC 360, SECTION D2

| Design Tensile Strength    | $\Phi P_n = \Phi F_y A_g$         | (tensile yielding) | ф = 0.90        | (D2-1) |
|----------------------------|-----------------------------------|--------------------|-----------------|--------|
|                            | $\Phi P_n = \Phi F_u A_e$         | (tensile rupture)  | ф = 0.75        | (D2-2) |
| Allowable Tensile Strength | $P_n / \Omega = F_y A_g / \Omega$ | (tensile yielding) | Ω = 1.67        | (D2-1) |
|                            | $P_n / \Omega = F_u A_e / \Omega$ | (tensile rupture)  | $\Omega = 2.00$ | (D2-2) |

#### • WELDS: AISC 360, SECTION J2

| Design Strength    | $φR_n = φF_wA_w$                  | ф = 0.75        | (J2-3)    |
|--------------------|-----------------------------------|-----------------|-----------|
| Allowable Strength | $R_n / \Omega = F_w A_w / \Omega$ | $\Omega = 2.00$ | (J2-3)    |
|                    | $F_{\rm w} = 0.60 F_{\rm EXX}$    |                 | (T. J2.5) |

#### • BENDING: AISC 360. SECTIONS F1 & F11

| Design Bending Strength    | $\phi M_n = \phi F_y Z$         | ф = 0.90        | (F1, F11) |
|----------------------------|---------------------------------|-----------------|-----------|
| Allowable Bending Strength | $M_n / \Omega = M_n Z / \Omega$ | $\Omega$ = 1.67 | (F1, F11) |

# CALCULATIONS:

| STEEL BRACKET PROPERTIES         | WELD PROPERTIES      |    |
|----------------------------------|----------------------|----|
| nouna Tanaila Ctranath F FF Isai | Fillet Wold Lee Cine | Λ, |

| Minimum Tensile Strength, F <sub>u</sub> | 55    | ksi | Fillet Weld Leg Size 0.2                              | 25 | in |
|------------------------------------------|-------|-----|-------------------------------------------------------|----|----|
| Minimum Yield Strength, Fy               | 40    | ksi | Effective Weld Thickness (throat), t <sub>e</sub> 0.1 | 8. | in |
| Thickness of steel, t                    | 0.250 | in  | Electrode Classification Number 7                     | )  | ks |
|                                          |       |     | Nominal Strength of Weld Metal, F <sub>w</sub> 4:     | 2  | ks |

# TABLE 5A: DESIGN TENSILE STRENGTH AND ALLOWABLE TENSILE STRENGTH (WELDS AND VERTICAL STEEL PLATES)

|          | Stre    | ength of W | elds         | Tensile Strength of Vertical Plates |                 |              |         |            |              |
|----------|---------|------------|--------------|-------------------------------------|-----------------|--------------|---------|------------|--------------|
|          |         |            |              |                                     | Yielding        |              | Rupture |            |              |
|          |         | LRFD       | ASD          |                                     | LRFD            | ASD          |         | LRFD       | ASD          |
|          | $A_{w}$ | $\phi R_n$ | $R_n/\Omega$ | $A_{g}$                             | φR <sub>n</sub> | $R_n/\Omega$ | $A_e$   | $\phi R_n$ | $R_n/\Omega$ |
| Model ID | (in²)   | (lb)       | (lb)         | (in²)                               | (lb)            | (lb)         | (in⁴)   | (lb)       | (lb)         |
| SW 46    | 3.54    | 111353     | 74235        | 2.5                                 | 90000           | 59880        | 2.19    | 90338      | 60225        |
| SW 55    | 3.54    | 111353     | 74235        | 2.5                                 | 90000           | 59880        | 2.19    | 90338      | 60225        |
| SW 63    | 3.54    | 111353     | 74235        | 2.5                                 | 90000           | 59880        | 2.19    | 90338      | 60225        |
| SW 64    | 3.54    | 111353     | 74235        | 2.5                                 | 90000           | 59880        | 2.19    | 90338      | 60225        |
| SW 65    | 3.54    | 111353     | 74235        | 2.5                                 | 90000           | 59880        | 2.19    | 90338      | 60225        |
| SW 66    | 3.54    | 111353     | 74235        | 2.5                                 | 90000           | 59880        | 2.19    | 90338      | 60225        |
| SW 83    | 4.95    | 155894     | 103929       | 3.5                                 | 126000          | 83832        | 3.19    | 131588     | 87725        |
| SW 84    | 4.95    | 155894     | 103929       | 3.5                                 | 126000          | 83832        | 3.19    | 131588     | 87725        |
| SW 85    | 4.95    | 155894     | 103929       | 3.5                                 | 126000          | 83832        | 3.19    | 131588     | 87725        |
| SW 88    | 4.95    | 155894     | 103929       | 3.5                                 | 126000          | 83832        | 3.19    | 131588     | 87725        |
| SW 60*   | n/a     | n/a        | n/a          | 2.5                                 | 90000           | 59880        | 2.19    | 90338      | 60225        |
| SW 80*   | n/a     | n/a        | n/a          | 3.5                                 | 126000          | 83832        | 3.19    | 131588     | 87725        |
| SW 60C*  | n/a     | n/a        | n/a          | 1.0                                 | 36000           | 23952        | 0.92    | 37950      | 25300        |

| TABLE 5B: | TABLE 5B: DESIGN UPLIFT STRENGTH AND ALLOWABLE UPLIFT STRENGTH AS DEFINED BY THE BENDING STRENGTH OF THE STEEL PLATES (ANYWHERE) |      |                |                    |                 |                    |        |                         |                           |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------|------|----------------|--------------------|-----------------|--------------------|--------|-------------------------|---------------------------|--|
|           | t                                                                                                                                | w    | F <sub>v</sub> | Z                  | фM <sub>n</sub> | M <sub>n</sub> / Ω | k      | LRFD<br>φT <sub>n</sub> | ASD<br>T <sub>n</sub> / Ω |  |
| Model ID  | (in)                                                                                                                             | (in) | (ksi)          | (in <sup>3</sup> ) | (in-lb)         | (in-lb)            |        | (lb)                    | (lb)                      |  |
| SW 46     | 0.250                                                                                                                            | 5.00 | 40             | 0.078              | 2813            | 1871               | 0.6300 | 4460                    | 2970                      |  |
| SW 55     | 0.250                                                                                                                            | 5.00 | 40             | 0.078              | 2813            | 1871               | 0.5611 | 5010                    | 3330                      |  |
| SW 63     | 0.250                                                                                                                            | 5.00 | 40             | 0.078              | 2813            | 1871               | 0.5084 | 5530                    | 3680                      |  |
| SW 64     | 0.250                                                                                                                            | 5.00 | 40             | 0.078              | 2813            | 1871               | 0.5164 | 5450                    | 3620                      |  |
| SW 65     | 0.250                                                                                                                            | 5.00 | 40             | 0.078              | 2813            | 1871               | 0.5440 | 5170                    | 3440                      |  |
| SW 66     | 0.250                                                                                                                            | 5.00 | 40             | 0.078              | 2813            | 1871               | 0.5141 | 5470                    | 3640                      |  |
| SW 83     | 0.250                                                                                                                            | 7.00 | 40             | 0.109              | 3938            | 2620               | 0.5265 | 7480                    | 4980                      |  |
| SW 84     | 0.250                                                                                                                            | 7.00 | 40             | 0.109              | 3938            | 2620               | 0.5369 | 7330                    | 4880                      |  |
| SW 85     | 0.250                                                                                                                            | 7.00 | 40             | 0.109              | 3938            | 2620               | 0.5440 | 7240                    | 4820                      |  |
| SW 88     | 0.250                                                                                                                            | 7.00 | 40             | 0.109              | 3938            | 2620               | 0.5459 | 7210                    | 4800                      |  |
| SW 60     | 0.250                                                                                                                            | 5.00 | 40             | 0.078              | 2813            | 1871               | 0.5504 | 5110                    | 3400                      |  |
| SW 80     | 0.250                                                                                                                            | 7.00 | 40             | 0.109              | 3938            | 2620               | 0.5825 | 6760                    | 4500                      |  |
| SW 60C    | 0.250                                                                                                                            | 4.00 | 40             | 0.063              | 2250            | 1497               | 1.1510 | 1950                    | 1300                      |  |

- (1) SW 60, SW 60C and SW 80 brackets are used in pairs
- (2) t = thickness of steel plate
- (3) w = width of steel plate
- (3) Z is plastic section modulus =  $w t^2 / 4$
- (4) Factor "k" represents the maximum moment found anywhere in the steel bracket under 1 pound of tension force. This factor was determined using a two dimensional computer model for each SW model and equals to the maximum internal moment divided by the total applied downward force of 1 lb, k = M/F.
- (5) Tension strength, as defined by the bending strength of the steel bracket, is determined using the following expressions  $\phi T_n = \phi M_n/k$ ,  $T_n / \Omega = (M_n/k) / \Omega$

#### 6. STURDI-WALL: UPLIFT STRENGTH OF ANCHORS

The calculations are presented in both the LRFD and ASD formats according to provisions of the governing code (ACI 318-14). The uplift strength calculations consider the effects of prying forces SW base plate exerts on the anchors. As the bracket is loaded in uplift, the ends of the steel base plate are prevented from moving down by the concrete surface (Figure 6B). The uplift force on the anchors is the sum of the uplift force on the bracket from the wood column and the vertical reaction forces at the ends of the steel base plate:  $R_{y1} + R_{y2} = T + P_1 + P_2$  (Figure 6A). The load on the anchors is calculated using the magnification factor of  $k = (R_{y1} + R_{y2}) \ / \ T$ , where T = 1 lb of force applied to a two-dimensional computer model in Visual Analysis by IES, and  $R_{v1}$  and  $R_{v2}$  are the reactions at the location of the anchors.

Table 6A shows design and allowable uplift strength of the steel bracket based on tensile strength of anchor bolts. Table 6B shows design and allowable uplift strength of the steel bracket based on concrete breakout. It is desirable to present the results in terms of ASD and LRFD design, therefore, AISC 360, which include both methods, is used for steel anchor design calculations. The breakout calculations are completed using the LRFD method per ACI 318 and are converted to the ASD levels using the conversion factor,  $\alpha$  = 1.6. The calculations are completed in Microsoft Excel (2016) using the listed equations.

# Ry Ry Ryz Pz

Figure 6A



Figure 6B

#### **GOVERNING CODE:**

Specification for Structural Steel Buildings ANSI/AISC 360-16 Building Code Requirements for Structural Concrete ACI 318-14

#### **GOVERNING EQUATIONS:**

• BOLTS (ANCHORS): AISC 360, SECTION J3

| Design Tensile Strength     | $\phi R_n = \phi N_b F_{nt} A_b$         | ф = 0.75        | (J3-1) |
|-----------------------------|------------------------------------------|-----------------|--------|
| Allowable Tensilie Strength | $R_n / \Omega = N_b F_{nt} A_b / \Omega$ | $\Omega = 2.00$ | (J3-1) |

N<sub>b</sub> = number of bolts

#### • ANCHORS (CONCRETE BREAKOUT): ACI 318, 17.4.2.1

| Design Strength    | $\phi N_{cbg} = \phi (A_{Nc} / A_{Nco}) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b$ | ф = 0.65       | (17.4.2.1b) |
|--------------------|---------------------------------------------------------------------------------------------|----------------|-------------|
| Allowable Strength | $N_{cbg}/\Omega = \phi N_{cbg} / \alpha$                                                    | $\alpha = 1.6$ |             |

| ANCHOR PROPERTIES                       |            |     | CONCRETE PROPERTIES      |           |      |  |
|-----------------------------------------|------------|-----|--------------------------|-----------|------|--|
| Nominal Tensile Stress, F <sub>nt</sub> | 45         | ksi | Compressive Strength, fc | 3         | ksi  |  |
|                                         | (or greate | er) |                          | (or great | ter) |  |

| TAB      | LE 6A: | UPLIFT             | STRENG             | TH OF S    | SW BRA       | CKET BA    | SED ON       | I TENSIL        | E STRE          | NGTH O       | F ANCHO         | DRS          |
|----------|--------|--------------------|--------------------|------------|--------------|------------|--------------|-----------------|-----------------|--------------|-----------------|--------------|
|          |        |                    | Tensile            | Strength   | of Anchor    | s (A307)   |              | Uplift Strength |                 |              |                 |              |
|          |        | 1/2"               | 2" 5/8" 1/2" 5/8"  |            |              | 8"         | 1/2"         |                 |                 | 5/8"         |                 |              |
|          | $N_b$  |                    |                    | LRFD       | ASD          | LRFD       | ASD          |                 | LRFD            | ASD          | LRFD            | ASD          |
|          |        | A <sub>b</sub>     | $A_b$              | $\phi R_n$ | $R_n/\Omega$ | $\phi R_n$ | $R_n/\Omega$ | k               | φT <sub>n</sub> | $T_n/\Omega$ | φT <sub>n</sub> | $T_n/\Omega$ |
| Model ID |        | (in <sup>2</sup> ) | (in <sup>2</sup> ) | (lbf)      | (lbf)        | (lbf)      | (lbf)        |                 | (lbf)           | (lbf)        | (lbf)           | (lbf)        |
| SW 46    | 2      | 0.20               | 0.31               | 13254      | 8836         | 20709      | 13806        | 2.04            | 6487            | 4325         | 10136           | 6758         |
| SW 55    | 2      | 0.20               | 0.31               | 13254      | 8836         | 20709      | 13806        | 1.94            | 6849            | 4566         | 10702           | 7135         |
| SW 63    | 2      | 0.20               | 0.31               | 13254      | 8836         | 20709      | 13806        | 1.84            | 7195            | 4797         | 11243           | 7495         |
| SW 64    | 2      | 0.20               | 0.31               | 13254      | 8836         | 20709      | 13806        | 1.86            | 7145            | 4763         | 11164           | 7442         |
| SW 65    | 2      | 0.20               | 0.31               | 13254      | 8836         | 20709      | 13806        | 1.90            | 6976            | 4650         | 10899           | 7266         |
| SW 66    | 2      | 0.20               | 0.31               | 13254      | 8836         | 20709      | 13806        | 1.85            | 7160            | 4773         | 11188           | 7459         |
| SW 83    | 2      | 0.20               | 0.31               | 13254      | 8836         | 20709      | 13806        | 1.87            | 7080            | 4720         | 11062           | 7375         |
| SW 84    | 2      | 0.20               | 0.31               | 13254      | 8836         | 20709      | 13806        | 1.89            | 7016            | 4677         | 10963           | 7309         |
| SW 85    | 2      | 0.20               | 0.31               | 13254      | 8836         | 20709      | 13806        | 1.90            | 6976            | 4650         | 10899           | 7266         |
| SW 88    | 2      | 0.20               | 0.31               | 13254      | 8836         | 20709      | 13806        | 1.90            | 6976            | 4650         | 10899           | 7266         |
| SW 60*   | 2      | 0.20               | 0.31               | 13254      | 8836         | 20709      | 13806        | 1.91            | 6935            | 4624         | 10837           | 7224         |
| SW 80*   | 2      | 0.20               | 0.31               | 13254      | 8836         | 20709      | 13806        | 1.96            | 6748            | 4499         | 10544           | 7029         |
| SW 60C*  | 1      | 0.20               | 0.31               | 6627       | 4418         | 10354      | 6903         | 1.95            | 3395            | 2263         | 5304            | 3536         |

- (1) SW 60 and SW 80 brackets to be used in pairs
- (2)  $\varphi T_n = \varphi R_n / k$
- (3)  $T_n / \Omega = (R_n / \Omega) / k$
- (4)  $k = (R_{y1} + R_{y2}) / T$ , T = 1 lb,  $R_{y1}$  and  $R_{y2}$  are anchor reaction forces in Visual Analysis

|          | TAB             | BLE 6B:        | UPLIFT (           | TENSILE            | ) STRE   | NGTH O          | FANCHO         | DRS: CO           | NCRETE           | BREAK | OUT             |                   |
|----------|-----------------|----------------|--------------------|--------------------|----------|-----------------|----------------|-------------------|------------------|-------|-----------------|-------------------|
|          |                 |                | 8"                 | CONCRE             | TE WALL, | ANCHOR          | CENTER         | ED IN WA          | LL               |       |                 |                   |
|          |                 |                |                    |                    |          |                 |                | LRFD              | ASD              |       | LRFD            | ASD               |
|          | C <sub>a1</sub> | S <sub>1</sub> | $A_{Nc}$           | A <sub>Nco</sub>   | Ψ        | h <sub>ef</sub> | N <sub>b</sub> | $\phi N_{cbg}$    | $N_{cbg}/\Omega$ | k     | φT <sub>n</sub> | $T_n/\Omega$      |
| Model ID | (in)            | (in)           | (in <sup>2</sup> ) | (in <sup>2</sup> ) |          | (in)            | (lb)           | (lb)              | (lb)             |       | (lb)            | (lb)              |
| SW 46    | 4.0             | 9.375          | 178.2              | 166.4              | 1.0      | 4.3             | 8303           | 5779              | 3612             | 2.04  | 2829            | 1768              |
| SW 55    | 4.0             | 9.375          | 178.2              | 166.4              | 1.0      | 4.3             | 8303           | 5779              | 3612             | 1.94  | 2987            | 1867              |
| SW 63    | 4.0             | 9.375          | 178.2              | 166.4              | 1.0      | 4.3             | 8303           | 5779              | 3612             | 1.84  | 3137            | 1961              |
| SW 64    | 4.0             | 10.875         | 190.2              | 166.4              | 1.0      | 4.3             | 8303           | 6168              | 3855             | 1.86  | 3325            | 2078              |
| SW 65    | 4.0             | 12.375         | 199.2              | 166.4              | 1.0      | 4.3             | 8303           | 6460              | 4038             | 1.90  | 3400            | 2125              |
| SW 66    | 4.0             | 10.875         | 190.2              | 166.4              | 1.0      | 4.3             | 8303           | 6168              | 3855             | 1.85  | 3332            | 2083              |
| SW 83    | 4.0             | 9.375          | 178.2              | 166.4              | 1.0      | 4.3             | 8303           | 5779              | 3612             | 1.87  | 3087            | 1929              |
| SW 84    | 4.0             | 10.875         | 190.2              | 166.4              | 1.0      | 4.3             | 8303           | 6168              | 3855             | 1.89  | 3265            | 2041              |
| SW 85    | 4.0             | 12.375         | 199.2              | 166.4              | 1.0      | 4.3             | 8303           | 6460              | 4038             | 1.90  | 3400            | 2125              |
| SW 88    | 4.0             | 12.875         | 199.2              | 166.4              | 1.0      | 4.3             | 8303           | 6460              | 4038             | 1.90  | 3400            | 2125              |
| SW 60    | 4.0             | 9.375          | 178.2              | 166.4              | 1.0      | 4.3             | 8303           | 5779              | 3612             | 1.91  | 3024            | 1890              |
| SW 80    | 4.0             | 9.375          | 178.2              | 166.4              | 1.0      | 4.3             | 8303           | 5779              | 3612             | 1.96  | 2942            | 1839              |
| SW 60C   | 4.0             | 0              | 103.2              | 166.4              | 1.0      | 4.3             | 8303           | 3347              | 2092             | 1.95  | 1715            | 1072              |
|          |                 |                | 10                 | " CONCRE           | TE WALL  | ANCHOR          | C CENTER       |                   |                  |       |                 |                   |
|          |                 | :              | 10                 | CONCRE             | IE WALL  | ANCHUR          | 3 CENTER       | LRFD              | ASD              |       | LRFD            | ASD               |
|          | C <sub>a1</sub> | S₁             | A <sub>Nc</sub>    | A <sub>Nco</sub>   | Ψ        | h <sub>ef</sub> | N <sub>b</sub> | φN <sub>cbg</sub> | $N_{cbg}/\Omega$ | k     | φT <sub>n</sub> | T <sub>n</sub> /Ω |
| Model ID | (in)            | (in)           | (in <sup>2</sup> ) | (in <sup>2</sup> ) |          | (in)            | (lb)           | (lb)              | (lb)             |       | (lb)            | (lb)              |
| SW 46    | 5.0             | 9.375          | 222.8              | 166.4              | 1.0      | 4.3             | 8303           | 7224              | 4515             | 2.04  | 3536            | 2210              |
| SW 55    | 5.0             | 9.375          | 222.8              | 166.4              | 1.0      | 4.3             | 8303           | 7224              | 4515             | 1.94  | 3733            | 2333              |
| SW 63    | 5.0             | 9.375          | 222.8              | 166.4              | 1.0      | 4.3             | 8303           | 7224              | 4515             | 1.84  | 3922            | 2451              |
| SW 64    | 5.0             | 10.875         | 237.8              | 166.4              | 1.0      | 4.3             | 8303           | 7710              | 4819             | 1.86  | 4156            | 2598              |
| SW 65    | 5.0             | 12.375         | 252.8              | 166.4              | 1.0      | 4.3             | 8303           | 8197              | 5123             | 1.90  | 4314            | 2696              |
| SW 66    | 5.0             | 10.875         | 237.8              | 166.4              | 1.0      | 4.3             | 8303           | 7710              | 4819             | 1.85  | 4165            | 2603              |
| SW 83    | 5.0             | 9.375          | 222.8              | 166.4              | 1.0      | 4.3             | 8303           | 7224              | 4515             | 1.87  | 3859            | 2412              |
| SW 84    | 5.0             | 10.875         | 237.8              | 166.4              | 1.0      | 4.3             | 8303           | 7710              | 4819             | 1.89  | 4082            | 2551              |
| SW 85    | 5.0             | 12.375         | 252.8              | 166.4              | 1.0      | 4.3             | 8303           | 8197              | 5123             | 1.90  | 4314            | 2696              |
| SW 88    | 5.0             | 12.875         | 257.8              | 166.4              | 1.0      | 4.3             | 8303           | 8359              | 5224             | 1.90  | 4399            | 2750              |
| SW 60    | 5.0             | 9.375          | 222.8              | 166.4              | 1.0      | 4.3             | 8303           | 7224              | 4515             | 1.91  | 3780            | 2363              |
| SW 80    | 5.0             | 9.375          | 222.8              | 166.4              | 1.0      | 4.3             | 8303           | 7224              | 4515             | 1.96  | 3678            | 2299              |
| SW 60C   | 5.0             | 0              | 129.0              | 166.4              | 1.0      | 4.3             | 8303           | 4183              | 2615             | 1.95  | 2143            | 1339              |

|          |                 |                | 40                 | II OONODE          | TE WALL   | ANOUGE          | 0.051155                   | SED IN MA      |                            |      |                         |                          |
|----------|-----------------|----------------|--------------------|--------------------|-----------|-----------------|----------------------------|----------------|----------------------------|------|-------------------------|--------------------------|
|          | C <sub>a1</sub> | S <sub>1</sub> | A <sub>Nc</sub>    | A <sub>Nco</sub>   | TE WALL.  | h <sub>ef</sub> | S CENTER<br>N <sub>b</sub> | LRFD           | ASD<br>N <sub>cbq</sub> /Ω | k    | LRFD<br>φT <sub>n</sub> | ASD<br>T <sub>n</sub> /Ω |
| Model ID | (in)            | (in)           | (in²)              | (in <sup>2</sup> ) |           | (in)            | (lb)                       | (lb)           | (lb)                       |      | (lb)                    | <br>(lb)                 |
| SW 46    | 6.0             | 9.375          | 267.3              | 166.4              | 1.0       | 4.3             | 8303                       | 8669           | 5418                       | 2.04 | 4243                    | 2652                     |
| SW 55    | 6.0             | 9.375          | 267.3              | 166.4              | 1.0       | 4.3             | 8303                       | 8669           | 5418                       | 1.94 | 4480                    | 2800                     |
| SW 63    | 6.0             | 9.375          | 267.3              | 166.4              | 1.0       | 4.3             | 8303                       | 8669           | 5418                       | 1.84 | 4706                    | 2941                     |
| SW 64    | 6.0             | 10.875         | 285.3              | 166.4              | 1.0       | 4.3             | 8303                       | 9252           | 5783                       | 1.86 | 4988                    | 3117                     |
| SW 65    | 6.0             | 12.375         | 303.3              | 166.4              | 1.0       | 4.3             | 8303                       | 9836           | 6148                       | 1.90 | 5177                    | 3236                     |
| SW 66    | 6.0             | 10.875         | 285.3              | 166.4              | 1.0       | 4.3             | 8303                       | 9252           | 5783                       | 1.85 | 4999                    | 3124                     |
| SW 83    | 6.0             | 9.375          | 267.3              | 166.4              | 1.0       | 4.3             | 8303                       | 8669           | 5418                       | 1.87 | 4631                    | 2894                     |
| SW 84    | 6.0             | 10.875         | 285.3              | 166.4              | 1.0       | 4.3             | 8303                       | 9252           | 5783                       | 1.89 | 4898                    | 3061                     |
| SW 85    | 6.0             | 12.375         | 303.3              | 166.4              | 1.0       | 4.3             | 8303                       | 9836           | 6148                       | 1.90 | 5177                    | 3236                     |
| SW 88    | 6.0             | 12.875         | 309.3              | 166.4              | 1.0       | 4.3             | 8303                       | 10031          | 6269                       | 1.90 | 5279                    | 3300                     |
| SW 60    | 6.0             | 9.375          | 267.3              | 166.4              | 1.0       | 4.3             | 8303                       | 8669           | 5418                       | 1.91 | 4536                    | 2835                     |
| SW 80    | 6.0             | 9.375          | 267.3              | 166.4              | 1.0       | 4.3             | 8303                       | 8669           | 5418                       | 1.96 | 4414                    | 2759                     |
| SW 60C   | 6.0             | 0              | 154.8              | 166.4              | 1.0       | 4.3             | 8303                       | 5020           | 3138                       | 1.95 | 2572                    | 1607                     |
|          |                 |                | EDGE I             | DISTANCE           | OF 7.5" A | ND GREA         | TER (EAC                   | H SIDE OF      | WALL)                      |      |                         |                          |
|          |                 |                |                    |                    |           |                 |                            | LRFD           | ASD                        |      | LRFD                    | ASD                      |
|          | C <sub>a1</sub> | S <sub>1</sub> | A <sub>Nc</sub>    | A <sub>Nco</sub>   | Ψ         | $h_{ef}$        | N <sub>b</sub>             | $\phi N_{cbg}$ | $N_{cbg}/\Omega$           | k    | $\phi T_n$              | $T_n/\Omega$             |
| Model ID | (in)            | (in)           | (in <sup>2</sup> ) | (in <sup>2</sup> ) |           | (in)            | (lb)                       | (lb)           | (lb)                       |      | (lb)                    | (lb)                     |
| SW 46    | 7.5             | 9.375          | 332.8              | 166.4              | 1.0       | 4.3             | 8303                       | 10793          | 6746                       | 2.04 | 5283                    | 3302                     |
| SW 55    | 7.5             | 9.375          | 332.8              | 166.4              | 1.0       | 4.3             | 8303                       | 10793          | 6746                       | 1.94 | 5578                    | 3486                     |
| SW 63    | 7.5             | 9.375          | 332.8              | 166.4              | 1.0       | 4.3             | 8303                       | 10793          | 6746                       | 1.84 | 5860                    | 3662                     |
| SW 64    | 7.5             | 10.875         | 332.8              | 166.4              | 1.0       | 4.3             | 8303                       | 10793          | 6746                       | 1.86 | 5819                    | 3637                     |
| SW 65    | 7.5             | 12.375         | 332.8              | 166.4              | 1.0       | 4.3             | 8303                       | 10793          | 6746                       | 1.90 | 5681                    | 3550                     |
| SW 66    | 7.5             | 10.875         | 332.8              | 166.4              | 1.0       | 4.3             | 8303                       | 10793          | 6746                       | 1.85 | 5831                    | 3644                     |
| SW 83    | 7.5             | 9.375          | 332.8              | 166.4              | 1.0       | 4.3             | 8303                       | 10793          | 6746                       | 1.87 | 5766                    | 3604                     |
| SW 84    | 7.5             | 10.875         | 332.8              | 166.4              | 1.0       | 4.3             | 8303                       | 10793          | 6746                       | 1.89 | 5714                    | 3571                     |
| SW 85    | 7.5             | 12.375         | 332.8              | 166.4              | 1.0       | 4.3             | 8303                       | 10793          | 6746                       | 1.90 | 5681                    | 3550                     |
| SW 88    | 7.5             | 12.875         | 332.8              | 166.4              | 1.0       | 4.3             | 8303                       | 10793          | 6746                       | 1.90 | 5681                    | 3550                     |
| SW 60    | 7.5             | 9.375          | 332.8              | 166.4              | 1.0       | 4.3             | 8303                       | 10793          | 6746                       | 1.91 | 5648                    | 3530                     |
| SW 80    | 7.5             | 9.375          | 332.8              | 166.4              | 1.0       | 4.3             | 8303                       | 10793          | 6746                       | 1.96 | 5496                    | 3435                     |
| SW 60C   | 7.5             | 0              | 166.4              | 166.4              | 1.0       | 4.3             | 8303                       | 5397           | 3373                       | 1.95 | 2765                    | 1728                     |

- (1) SW 60, SW 60C and SW 80 angles are to be used in pairs
- (2) c<sub>a1</sub> = distance from center of anchor to edge of concrete, assume the anchors are installed in center of wall
- (3)  $S_1$  = spacing between anchors
- (4)  $A_{Nc} = min [(c_{a1} + c_{a1}) (1.5h_{ef} + S_1 + 1.5h_{ef}), N_b A_{Nco}]$
- (5)  $A_{Nco} = 9 h_{ef}^{2}$
- (6)  $\Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} = 1.0$
- (7)  $h_{ef}$  is based on 5.75 in anchor embedment into the concrete,  $h_{ef}$  = (3/4)5.75
- (8)  $N_b = k_c \sqrt{(f_c)} h_{ef}^{1.5}, k_c = 17$
- (9)  $k = (R_{y1} + R_{y2}) / T$ , T = 1 lb,  $R_{y1}$  and  $R_{y2}$  are anchor reaction forces in Visual Analysis

#### 7. STURDI-WALL PLUS: ROTATIONAL STIFFNESS

The effective rotational stiffness of the SWP steel bracket consists of three parts, three rotational springs arranged in series:

- (1)  $(M/\theta)_f$ , the rotational stiffness of the steel-to-wood connection (slip-modulus of the dowel fasteners)
- (2) (M/θ)<sub>s</sub>, the rotational stiffness of the steel saddle (3d finite element analysis in a structural design computer program)
- (3)  $(M/\theta)_r$ , the rotational stiffness resulting from the axial deformation in the tension rebar

Each SWP steel bracket is fastened to wood column with 0.242"x3" structural screws and 1/2" SAE J429 Grade 5 through bolts. There are two fastener groups, the top fastener group and the bottom fastener group. The centroids of the fastener groups are separated by the distance "s" (Table 7A). To calculate the rotational stiffness of the steel-to-wood connection, it is necessary to first determine the slip-modulus for the 0.242" structural screw and the 1/2" through bolt. Per the Wood Handbook (FPL, 2010, United States Department of Agriculture Forest Service) the fastener slip-modulus for dowels loaded in single shear in steel-to-wood application can be calculated using the following expression: k = 270,000 D<sup>1.5</sup>, where k is the slip-modulus and D is the fastener diameter. The slip modulus equation, however, does not include slippage due to fastener-hole clearance: a fastener has the freedom to move laterally with respect to the steel plate until it comes in contact with the edge of the hole in the steel plate. The holes for the screws and the bolts are 5/16" and 5/8" respectively. If the fasteners are installed precisely through the center of the holes in the steel plate, the clearance on either side the screw and the bolt is approximately 1/32" and 1/16", respectively. The screws will be engaged and start transferring load before the bolt may come in contact with the edge of the hole in the steel plate. For this reason, the slip-modulus of the bolt is reduced proportionally to the ratio of clearances: (1/32") / (1/16") = 0.5, or 50%. The slip-modulus for each fastener group and the resulting rotational stiffness for each model is shown in Table 7B.

The rotational stiffness of the steel bracket below the top of the concrete pier is attributed mostly to the axial deformation of the tension rebar. Since the axial forces in the rebar are linearly decreasing from maximum to zero along the rebar development length  $L_d$ , or rebar length of 18", whichever is less, the effective length used in calculating axial rebar stiffness is equal to the lesser of  $L_d$  /2 or 9". The rotational stiffness of the steel saddle,  $(M/\theta)_s$ , and the rebar  $(M/\theta)_r$ , is analyzed jointly using a finite element analysis in Visual Analysis by IES, and the effective rotational stiffness is designated as  $(M/\theta)_{s,r}$ . Figure 7 shows a sketch of the finite element analysis model with supports. All springs have infinite stiffness and are set to only provide resistance to compression forces. The 1000 in-lb moment is applied to all models via the  $F_T$  and  $F_B$  forces, which are equal in magnitude and opposite in direction,  $F_T = F_B = M/s$ . The horizontal displacement  $\Delta$  at force  $F_T$  (top fastener group) is divided by y to obtain the angle of rotation,  $\theta$ , in radians,  $\theta = \Delta / y$ . The rotational stiffness  $(M/\theta)_{s,r} = M / \theta$ . The results of the analysis for each model are summarized in Table 7C.

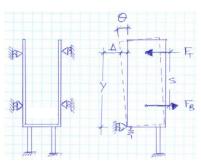



Figure 7

The effective rotational stiffness for each model, consisting of the steel-to-wood element and, the steel saddle and the rebar, is shown in Table 7D. The calculations are completed in Visual Analysis by IES and Microsoft Excel (2016) using the listed equations.

#### **GOVERNING EQUATIONS:**

| Effective Rotational Stiffness           | $(M/\theta)_e = [1 / (M/\theta)_f + 1 / (M/\theta)_{s,r}]^{-1}$         |                             |
|------------------------------------------|-------------------------------------------------------------------------|-----------------------------|
| Rotational Stiffness of Steel-to-Wood    | $(M/\theta)_f = k s^2 / 2$                                              |                             |
| Rotational Stiffness of Saddle and Rebar | $(M/\theta)_{s,r}$ = determined from finite element ar                  | nalysis                     |
| Slip Modulus for (1) screw, single shear | $k_s = 270,000 D_s^{1.5}$                                               | FPL, Chapter 8              |
| Slip Modulus for (1) bolt, double shear  | $k_b = 0.5 [2(270,000) D_b^{1.5}]$                                      | (see discussion above)      |
| Slip Modulus for a Fastener Group        | $k_g = N_s k_s + N_b k_b$                                               | ,                           |
| Rebar Development Length                 | $L_d = [(3/40)(f_y/\sqrt{f_c}) (\Psi_t \ \Psi_e \ \Psi_s) / c_b] d_b^2$ | (ACI 318-14, Eq. 25.4.2.3a) |

s = distance between the centroids of the top and bottom fastener groups

 $N_{\mbox{\scriptsize s}}$  = quantity of screws in one fastener group

N<sub>b</sub> = quantity of bolts in one fastener group

D<sub>s</sub> = screw diameter

D<sub>b</sub> = bolt diameter

| TABLE 7A: LOCATION OF AND DISTANCE BETWEEN THE CENTROIDS OF THE TOP AND BOTTOM FASTENER GROUPS |                |         |      |                |         |         |         |         |        |        |       |       |
|------------------------------------------------------------------------------------------------|----------------|---------|------|----------------|---------|---------|---------|---------|--------|--------|-------|-------|
|                                                                                                | k <sub>s</sub> | $k_b$   |      | Elevation (in) |         |         |         |         |        |        |       | S     |
| Model                                                                                          | (lb/in)        | (lb/in) | Base | Bolt 1         | Screw 1 | Screw 2 | Screw 3 | Screw 4 | Bolt 2 | Bottom | Top   | (in)  |
| SWP 46                                                                                         | 32143          | 95459   | 0    | 3.375          | 4.375   | n/a     | n/a     | 11.125  | 12.125 | 3.627  | 11.87 | 8.25  |
| SWP 63                                                                                         | 32143          | 95459   | 0    | 3.375          | 4.375   | n/a     | n/a     | 11.125  | 12.125 | 3.627  | 11.87 | 8.25  |
| SWP 64                                                                                         | 32143          | 95459   | 0    | 3.375          | 4.375   | n/a     | n/a     | 16.125  | 17.125 | 3.627  | 16.87 | 13.25 |
| SWP 66                                                                                         | 32143          | 95459   | 0    | 3.375          | 4.375   | n/a     | n/a     | 11.125  | 12.125 | 3.627  | 11.87 | 8.25  |
| SWP 83                                                                                         | 32143          | 95459   | 0    | 3.875          | 4.875   | 6.875   | 14.125  | 16.125  | 17.125 | 4.680  | 16.32 | 11.64 |
| SWP 84                                                                                         | 32143          | 95459   | 0    | 3.875          | 4.875   | 6.875   | 14.125  | 16.125  | 17.125 | 4.680  | 16.32 | 11.64 |
| SWP 85                                                                                         | 32143          | 95459   | 0    | 3.875          | 4.875   | 6.875   | 14.125  | 16.125  | 17.125 | 4.680  | 16.32 | 11.64 |
| SWP 88                                                                                         | 32143          | 95459   | 0    | 3.875          | 4.875   | 6.875   | 14.125  | 16.125  | 17.125 | 4.680  | 16.32 | 11.64 |

|        |                | TABLE          | 7B: ROTAT      | <b>TONAL STIF</b> | FNESS OF       | STEEL-TO       | D-WOOD CON     | NECTION, (M/ | $\theta$ ) <sub>f</sub> |                    |
|--------|----------------|----------------|----------------|-------------------|----------------|----------------|----------------|--------------|-------------------------|--------------------|
|        | D <sub>s</sub> | D <sub>b</sub> | k <sub>s</sub> | k <sub>b</sub>    | N <sub>s</sub> | N <sub>b</sub> | k <sub>g</sub> | S            | $(M/\theta)_f$          | (M/θ) <sub>f</sub> |
| Model  | (in)           | (in)           | (lb/in)        | (lb/in)           |                |                | (lb/in)        | (in)         | (in-kip/rad)            | (in-kip/deg)       |
| SWP 46 | 0.242          | 0.50           | 32143          | 95459             | 2              | 1              | 159745         | 8.25         | 5,000                   | 94.8               |
| SWP 63 | 0.242          | 0.50           | 32143          | 95459             | 2              | 1              | 159745         | 8.25         | 5,000                   | 94.8               |
| SWP 64 | 0.242          | 0.50           | 32143          | 95459             | 2              | 1              | 159745         | 13.25        | 14,000                  | 245                |
| SWP 66 | 0.242          | 0.50           | 32143          | 95459             | 2              | 1              | 159745         | 8.25         | 5,000                   | 94.8               |
| SWP 83 | 0.242          | 0.50           | 32143          | 95459             | 4              | 1              | 224032         | 11.64        | 15,000                  | 265                |
| SWP 84 | 0.242          | 0.50           | 32143          | 95459             | 4              | 1              | 224032         | 11.64        | 15,000                  | 265                |
| SWP 85 | 0.242          | 0.50           | 32143          | 95459             | 4              | 1              | 224032         | 11.64        | 15,000                  | 265                |
| SWP 88 | 0.242          | 0.50           | 32143          | 95459             | 4              | 1              | 224032         | 11.64        | 15,000                  | 265                |

| TABLE 7 | TABLE 7C: ROTATIONAL STIFFNESS OF THE STEEL SADDLE AND REBAR, $(M/\theta)_{s,r}$ |         |          |                    |                      |  |  |  |  |  |
|---------|----------------------------------------------------------------------------------|---------|----------|--------------------|----------------------|--|--|--|--|--|
|         | L <sub>d</sub> / 2*                                                              | М       | θ        | $(M/\theta)_{s,r}$ | (M/θ) <sub>s,r</sub> |  |  |  |  |  |
| Model   | (in)                                                                             | (in-lb) | (rad)    | (in-kip/rad)       | (in-kip/deg)         |  |  |  |  |  |
| SWP 46  | 9.0                                                                              | 1000    | 0.000317 | 3150               | 55.1                 |  |  |  |  |  |
| SWP 63  | 9.0                                                                              | 1000    | 0.000317 | 3150               | 55.1                 |  |  |  |  |  |
| SWP 64  | 5.1                                                                              | 1000    | 0.000313 | 3150               | 55.8                 |  |  |  |  |  |
| SWP 66  | 7.3                                                                              | 1000    | 0.000306 | 3250               | 57.0                 |  |  |  |  |  |
| SWP 83  | 9.0                                                                              | 1000    | 0.000144 | 6900               | 121                  |  |  |  |  |  |
| SWP 84  | 8.2                                                                              | 1000    | 0.000153 | 6500               | 114                  |  |  |  |  |  |
| SWP 85  | 7.7                                                                              | 1000    | 0.000157 | 6350               | 111                  |  |  |  |  |  |
| SWP 88  | 7.7                                                                              | 1000    | 0.000158 | 6300               | 110                  |  |  |  |  |  |

<sup>\*</sup> see Table 4C

| TABLE 7D: EFFECTIVE ROTATIONAL STIFFNESS OF SWP. (M/0).    |                                   |              |  |  |  |  |  |  |  |
|------------------------------------------------------------|-----------------------------------|--------------|--|--|--|--|--|--|--|
| TABLE 7D. LITECTIVE ROTATIONAL OTHER MESS OF SWIT, (MI/O)e |                                   |              |  |  |  |  |  |  |  |
|                                                            | $(M/\theta)_{e}$ $(M/\theta)_{e}$ |              |  |  |  |  |  |  |  |
| Model                                                      | (in-kip/rad)                      | (in-kip/deg) |  |  |  |  |  |  |  |
| SWP 46                                                     | 1900                              | 34.8         |  |  |  |  |  |  |  |
| SWP 63                                                     | 1900                              | 34.8         |  |  |  |  |  |  |  |
| SWP 64                                                     | 2550                              | 45.4         |  |  |  |  |  |  |  |
| SWP 66                                                     | 1950                              | 35.6         |  |  |  |  |  |  |  |
| SWP 83                                                     | 4700                              | 83.2         |  |  |  |  |  |  |  |
| SWP 84                                                     | 4500                              | 79.7         |  |  |  |  |  |  |  |
| SWP 85                                                     | 4450                              | 78.3         |  |  |  |  |  |  |  |
| SWP 88                                                     | 4400                              | 78.0         |  |  |  |  |  |  |  |

#### 8.1 STURDI-WALL PLUS: BENDING AND SHEAR STRENGTH OF STEEL-TO-WOOD CONNECTION\*

#### \*WITH SDS SCREWS BY SIMPSON STRONG TIE

The shear and bending forces are transferred from the wood column into the steel bracket via 0.242"x3" structural screws and 1/2" through bolts. The calculations below are for wood columns with specific gravity, SG, of 0.55 and higher. The calculations assume a rotationally rigid concrete foundation to ensure that moment reversal (location of zero moment) occurs above the bracket, not below (Figure 8.1A). The distance between the centroids of the top and bottom fastener groups, s, and the distance from the bottom of column to the centroid of the bottom fastener group, a. are specified in tables below. SWP brackets are designed to transfer shear, V and bending moment, M, forces as measured at the bottom of the bracket. There are four load cases to consider, see Figure 8.1B. Load Case 1 defines maximum shear strength, V<sub>max</sub>, of the column-to-bracket connection in absence of moment forces. Load Case 2 defines the maximum moment strength, M<sub>max</sub>, of the column-to-bracket connection in absence of shear forces. Load Case 3 is a combination of Load Case 1 and Load Case 2 where a maximum moment and a maximum shear force are applied to the bracket simultaneously. In all load cases, maximum shear strength V<sub>max</sub>, and maximum moment strength, M<sub>max</sub>, are defined such that the magnitude of the resulting forces  $F_T$  (force at the topo fastener group) and  $F_B$  (force at the bottom fastener group) does not exceed the latearal strength of each respective fastener group.

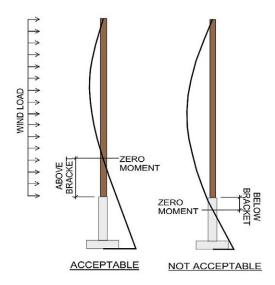



FIGURE 8.1A

The resulting forces  $F_T$  and  $F_B$  in Load Case 1 are acting in opposite direction from the resulting forces  $F_T$  and  $F_B$  in Load Case 2. This means that adding a shear load to the connection that is loaded with the maximum moment force will result in reduction in forces  $F_T$  and  $F_B$ . Similarly, adding a moment force to the connection that is loaded with the maximum shear force will result in reduction in forces  $F_T$  and  $F_B$ . Therefore,  $V_{max}$  and  $M_{max}$  loading may be applied to the bracket simultaneously without any reduction in strength. Load Case 4 represents the condition in which the moment reversal occurs below the bracket. In this load condition,  $M_{max}$ , as determined by Load Condition 2, cannot be used in combination with a shear force of any magnitude and  $V_{max}$ , as determined by Load Condition 1, cannot be used in combination with moment force of any magnitude. As shear force increases moment strength decreases, and as moment force increases shear strength decreases. This condition is rare and should not occur when foundation is properly designed.

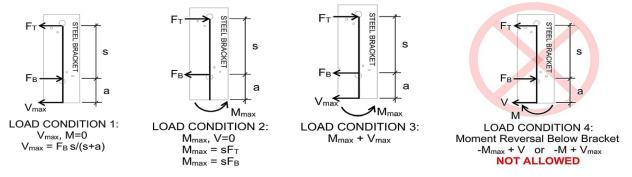



FIGURE 8.1B

The load on each fastener type (screw, bolt) within the fastener group is proportional to the ratio of the slip-modulus of the fastener type to the cumulative slip-modulus of the entire fastener group:  $N_s k_s / k_g$ ,  $N_b k_b / k_g$ , where  $N_s$  is the quantity of screws within the fastener group,  $N_b$  is the quantity of bolts in double shear within the fastener group,  $k_s$  is the slip-modulus of one screw in single shear,  $k_b$  is the slip-modulus of one bolt in double shear, and  $k_g$  is the cumulative slip-modulus of the entire fastener group (Table 7.1B). The slip-modulus of the screw fasteners does not equal the slip modulus of the bolt fastener(s):  $N_s k_s \neq N_b k_b$ . As a result, one fastener type is loaded to the maximum allowable or design lateral strength, while the second fastener type receives the balance of the load which will not reach the fastener's maximum capacity (Tables 8.1C and 8.1D).

The allowable bending and shear strength (ASD) and the design bending strength and shear strength (LRFD) of the steel-to-wood connection for each model is shown in Table 8.1E. The calculations are completed in Microsoft Excel (2016) using the listed equations.

# **GOVERNING CODE:**

# National Design Specification for Wood Construction, NDS (2015)

# **GOVERNING EQUATIONS:**

| Allowable Lateral Strength of Screws  | $Z'_s$ , $ASD N_s = N_s Z C_D C_\Delta$                 | NDS Table 11.3.1 |
|---------------------------------------|---------------------------------------------------------|------------------|
| Design Lateral Strength of Screws     | $Z'_{s, LRFD} N_s = \phi N_s Z \lambda C_{\Delta} K_F$  | NDS Table 11.3.1 |
| Allowable Lateral Strength of Bolt(s) | $Z'_{b, ASD} N_b = N_b Z C_D C_\Delta$                  | NDS Table 11.3.1 |
| Design Lateral Strength of Bolt(s)    | $Z'_{b, LRFD} N_b = \varphi N_b Z \lambda C_\Delta K_F$ | NDS Table 11.3.1 |

| $Z$ = Unadjusted reference lateral (shear) design value for one fastener $Z'$ = Adjusted lateral design value for one fastener $C_D$ = ASD load duration factor | NDS Table 12.3.1A<br>NDS Table 11.3.1<br>NDS Table 2.3.2 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| $C_{\Delta}$ = Geometry factor                                                                                                                                  | NDS 12.5.1                                               |
| N = total quantity of fasteners in the group                                                                                                                    |                                                          |
| φ = LRFD resistance factor                                                                                                                                      | NDS Table N2                                             |
| λ = LRFD time effect factor                                                                                                                                     | NDS Table N3                                             |
| K <sub>F</sub> = ASD to LRFD format conversion factor                                                                                                           | NDS Table N1                                             |
| Subscript "s" = screws                                                                                                                                          |                                                          |
| Subscript "b" = bolts                                                                                                                                           |                                                          |

| Allowable Lateral Strength of Fastener Gr | oup $V_n/\Omega = \min \left[ Z'_{s, ASD}(k_g/k_s), Z'_{b, ASD}(k_g/k_b) \right]$  |
|-------------------------------------------|------------------------------------------------------------------------------------|
| Design Lateral Strength of Fastener Group | $\varphi V_n = \min \left[ Z'_{s, LRFD} (k_g/k_s), Z'_{b, LRFD} (k_g/k_b) \right]$ |

| Allowable Bending Strength of Connection     | $M_n/\Omega = s NZ'_{ASD}$       |
|----------------------------------------------|----------------------------------|
| <b>Design Bending Strength of Connection</b> | $\phi M_n = s NZ'_{LRFD}$        |
| Allowable Shear Strength of Connection       | $V_n/\Omega = NZ'_{ASD} s/(s+a)$ |
| <b>Design Shear Strength of Connection</b>   | $\phi V_n = NZ'_{LRFD} s/(s+a)$  |

s = distance between the centroids of the fastener groups

a = distance from bottom of bracket to centroid of the bottom fastener group

TABLE 8.1A: ADJUSTED LATERAL DESIGN VALUE OF ONE SCREW: NDS Table 12.3.1A (Yield Limit Equations)

|                                                    |                                  |       | $F_{yb}$                                 | 164000       | 1+R <sub>e</sub>         | 1.1    |                       | θ                | 90     |
|----------------------------------------------------|----------------------------------|-------|------------------------------------------|--------------|--------------------------|--------|-----------------------|------------------|--------|
| Screw Diameter (in)                                | D                                | 0.242 | $F_{\it em, par}$                        | 5526         | 2+ <i>R</i> <sub>e</sub> | 2.1    |                       | I <sub>m</sub>   | 1259.3 |
| Screw Length (in)                                  | L                                | 3     | $F_{\it em, perp}$                       | 5526         | k <sub>1</sub>           | 0.408  |                       | Is               | 1280.4 |
| Thickness of Steel Plate Member (in)               | $I_s$                            | 0.25  | $F_{\it em}$                             | 5526         | k 2                      | 0.536  |                       | 11               | 522.4  |
| Thickness of Wood Member (in)                      | $I_{m}$                          | 4.5   | $R_{e}$                                  | 0.089        | <b>k</b> 3               | 6.944  |                       | III <sub>m</sub> | 572.7  |
| Screw Penetration into main member (in)            | р                                | 2.75  | $R_t$                                    | 11.000       | ${\it F}_{\it es, par}$  | 61800  |                       | III s            | 380.5  |
| Minimum Allowed Penetration, p <sub>min</sub> = 6D | $p_{min}$                        | 1.5   | Ko                                       | 2.920        | F es, perp               |        |                       | IV               | 472.3  |
| Specific Gravity of Wood Member                    | G                                | 0.55  | р                                        | 2.8          | F <sub>es</sub>          | 61800  |                       | $D_r$            | 0.242  |
| Lateral Design Value (lbs)                         | Z                                | 380   |                                          | LRFD resista | nce factor               |        | ф                     | 0.65             |        |
| ASD Load Duration Factor                           | $C_D$                            | 1.6   |                                          | LRFD time ef | fect factor              |        | λ                     | 1                |        |
| Geometry Factor                                    | $C_{\scriptscriptstyle{\Delta}}$ | 1     |                                          | ASD to LRFD  | format conversion        | factor | $K_{F}$               | 3.32             |        |
| ASD Adjusted Lateral Design Value (lbs)            | Z's, ASD                         | 609   | LRFD Adjusted Lateral Design Value (lbs) |              |                          |        | Z' <sub>s, LRFD</sub> | 821              |        |

TABLE 8.1B: ADJUSTED LATERAL DESIGN VALUE OF ONE BOLT (DOUBLE SHEAR): NDS Table 12.3.1A (Yield Limit Equations)

| Bolt Diameter (in)                      | D                                | 0.5    | F <sub>em, par</sub>                                           | 6160        | K <sub>θ</sub>      | 1.250                 | •       | Í <sub>m</sub> | 1631 |
|-----------------------------------------|----------------------------------|--------|----------------------------------------------------------------|-------------|---------------------|-----------------------|---------|----------------|------|
| Main Member Thickness (in)              | $t_{\text{m, min}}$              | 4.5    | F <sub>em, perp</sub>                                          | 3626        | 1+R <sub>e</sub>    | 1.042                 |         | $III_s$        | 1494 |
| Side Member Thickness (in)              | $t_s$                            | 0.25   | $F_{em}$                                                       | 3626        | 2+R <sub>e</sub>    | 2.042                 |         | IV             | 1960 |
| Dowel Bearing Strength (psi)            | $F_{es}$                         | 87000  | $R_{e}$                                                        | 0.042       | $k_3$               | 13.463                |         |                |      |
| Bolt Yield Strength (psi)               | $F_{yb}$                         | 106000 |                                                                |             |                     |                       |         |                |      |
| Max Angle Load to Grain (deg)           | θ                                | 90     |                                                                |             |                     |                       |         |                |      |
| Specific Gravity                        | G                                | 0.55   |                                                                |             |                     |                       |         |                |      |
| Reference Lateral Design Value (Z)      | Z                                | 1494   | 1                                                              | LRFD resist | tance factor        |                       | ф       | 0.65           |      |
| ASD Load Duration Factor                | $C_D$                            | 1.6    | 1                                                              | LRFD time   | effect factor       |                       | λ       | 1              |      |
| Geometry Factor                         | $C_{\scriptscriptstyle{\Delta}}$ | 1      |                                                                | ASD to LRF  | D format conversion | factor                | $K_{F}$ | 3.32           |      |
| ASD Adjusted Lateral Design Value (lbs) | Z' <sub>b, ASD</sub>             | 2391   | LRFD Adjusted Lateral Design Value (lbs) Z' <sub>b, LRFD</sub> |             |                     | Z' <sub>b, LRFD</sub> | 3224    |                |      |

| TABLE 8.1C: LATERAL (SHEAR) STRENGTH OF EACH FASTENER GROUP |         |         |         |                          |                          |                         |                           |      |              |
|-------------------------------------------------------------|---------|---------|---------|--------------------------|--------------------------|-------------------------|---------------------------|------|--------------|
|                                                             |         |         |         |                          |                          |                         |                           | LRFD | ASD          |
|                                                             | $k_s$   | $k_b$   | $k_{g}$ | $Z'_{s, LRFD} (k_g/k_s)$ | $Z'_{b, LRFD} (k_g/k_b)$ | $Z'_{s, ASD} (k_g/k_s)$ | $Z'_{b, ASD}$ $(k_g/k_b)$ | φV   | $V_n/\Omega$ |
| Model                                                       | (lb/in) | (lb/in) | (lb/in) | (lb)                     | (lb)                     | (lb)                    | (lb)                      | (lb) | (lb)         |
| SWP 46                                                      | 32143   | 95459   | 159745  | 4081                     | 5396                     | 3026                    | 4001                      | 4081 | 3026         |
| SWP 63                                                      | 32143   | 95459   | 159745  | 4081                     | 5396                     | 3026                    | 4001                      | 4081 | 3026         |
| SWP 64                                                      | 32143   | 95459   | 159745  | 4081                     | 5396                     | 3026                    | 4001                      | 4081 | 3026         |
| SWP 66                                                      | 32143   | 95459   | 159745  | 4081                     | 5396                     | 3026                    | 4001                      | 4081 | 3026         |
| SWP 83                                                      | 32143   | 95459   | 224032  | 5723                     | 7567                     | 4243                    | 5611                      | 5723 | 4243         |
| SWP 84                                                      | 32143   | 95459   | 224032  | 5723                     | 7567                     | 4243                    | 5611                      | 5723 | 4243         |
| SWP 85                                                      | 32143   | 95459   | 224032  | 5723                     | 7567                     | 4243                    | 5611                      | 5723 | 4243         |
| SWP 88                                                      | 32143   | 95459   | 224032  | 5723                     | 7567                     | 4243                    | 5611                      | 5723 | 4243         |

| TABLE 8.1D: LOAD DISTRIBUTION RATIO AND LOAD-TO-STRENGTH RATIO |                |                |          |           |          |          |
|----------------------------------------------------------------|----------------|----------------|----------|-----------|----------|----------|
|                                                                | N <sub>s</sub> | N <sub>b</sub> | Load Dis | tribution | Load / S | Strength |
| Model                                                          |                |                | Screws   | Bolts     | Screws   | Bolts    |
| SWP 46                                                         | 2              | 1              | 40.2%    | 59.8%     | 100.0%   | 76%      |
| SWP 63                                                         | 2              | 1              | 40.2%    | 59.8%     | 100.0%   | 76%      |
| SWP 64                                                         | 2              | 1              | 40.2%    | 59.8%     | 100.0%   | 76%      |
| SWP 66                                                         | 2              | 1              | 40.2%    | 59.8%     | 100.0%   | 76%      |
| SWP 83                                                         | 4              | 1              | 57.4%    | 42.6%     | 100.0%   | 76%      |
| SWP 84                                                         | 4              | 1              | 57.4%    | 42.6%     | 100.0%   | 76%      |
| SWP 85                                                         | 4              | 1              | 57.4%    | 42.6%     | 100.0%   | 76%      |
| SWP 88                                                         | 4              | 1              | 57.4%    | 42.6%     | 100.0%   | 76%      |

|        | TABLE 8.1E: SHEAR AND BENDING STRENGTH OF STEEL-TO-WOOD CONNECTION |       |                 |                 |                   |              |  |
|--------|--------------------------------------------------------------------|-------|-----------------|-----------------|-------------------|--------------|--|
|        |                                                                    |       | LF              | RFD             | A                 | SD           |  |
|        | а                                                                  | s     | φV <sub>n</sub> | фM <sub>n</sub> | V <sub>n</sub> /Ω | $M_n/\Omega$ |  |
| Model  | (in)                                                               | (in)  | (lb)            | (lb-in)         | (lb)              | (lb-in)      |  |
| SWP 46 | 3.63                                                               | 8.25  | 2830            | 33670           | 2100              | 24960        |  |
| SWP 63 | 3.63                                                               | 8.25  | 2830            | 33670           | 2100              | 24960        |  |
| SWP 64 | 3.63                                                               | 13.25 | 3200            | 54070           | 2380              | 40090        |  |
| SWP 66 | 3.63                                                               | 8.25  | 2830            | 33670           | 2100              | 24960        |  |
| SWP 83 | 4.68                                                               | 11.65 | 4080            | 66670           | 3030              | 49430        |  |
| SWP 84 | 4.68                                                               | 11.65 | 4080            | 66670           | 3030              | 49430        |  |
| SWP 85 | 4.68                                                               | 11.65 | 4080            | 66670           | 3030              | 49430        |  |
| SWP 88 | 4.68                                                               | 11.65 | 4080            | 66670           | 3030              | 49430        |  |

## 8.2 STURDI-WALL PLUS: BENDING AND SHEAR STRENGTH OF STEEL-TO-WOOD CONNECTION\*

#### \*WITH PROPRIATARY SCREWS

The shear and bending forces are transferred from the wood column into the steel bracket via 0.242"x3" structural screws and 1/2" through bolts. The calculations below are for wood columns with specific gravity, SG, of 0.55 and higher. The calculations assume a rotationally rigid concrete foundation to ensure that moment reversal (location of zero moment) occurs above the bracket, not below (Figure 8.2A). The distance between the centroids of the top and bottom fastener groups, s, and the distance from the bottom of column to the centroid of the bottom fastener group, a. are specified in tables below. SWP brackets are designed to transfer shear, V and bending moment, M, forces as measured at the bottom of the bracket. There are four load cases to consider, see Figure 8.2B. Load Case 1 defines maximum shear strength, V<sub>max</sub>, of the column-to-bracket connection in absence of moment forces. Load Case 2 defines the maximum moment strength, M<sub>max</sub>, of the column-to-bracket connection in absence of shear forces. Load Case 3 is a combination of Load Case 1 and Load Case 2 where a maximum moment and a maximum shear force are applied to the bracket simultaneously. In all load cases, maximum shear strength V<sub>max</sub>, and maximum moment strength, M<sub>max</sub>, are defined such that the magnitude of the resulting forces  $F_T$  (force at the topo fastener group) and  $F_B$  (force at the bottom fastener group) does not exceed the latearal strength of each respective fastener group.

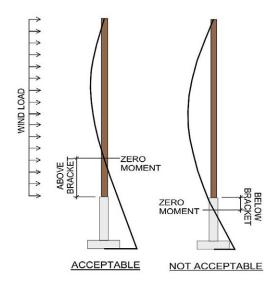



FIGURE 8.2A

The resulting forces  $F_T$  and  $F_B$  in Load Case 1 are acting in opposite direction from the resulting forces  $F_T$  and  $F_B$  in Load Case 2. This means that adding a shear load to the connection that is loaded with the maximum moment force will result in reduction in forces  $F_T$  and  $F_B$ . Similarly, adding a moment force to the connection that is loaded with the maximum shear force will result in reduction in forces  $F_T$  and  $F_B$ . Therefore,  $V_{max}$  and  $M_{max}$  loading may be applied to the bracket simultaneously without any reduction in strength. Load Case 4 represents the condition in which the moment reversal occurs below the bracket. In this load condition,  $M_{max}$ , as determined by Load Condition 2, cannot be used in combination with a shear force of any magnitude and  $V_{max}$ , as determined by Load Condition 1, cannot be used in combination with moment force of any magnitude. As shear force increases moment strength decreases, and as moment force increases shear strength decreases. This condition is rare and should not occur when foundation is properly designed.

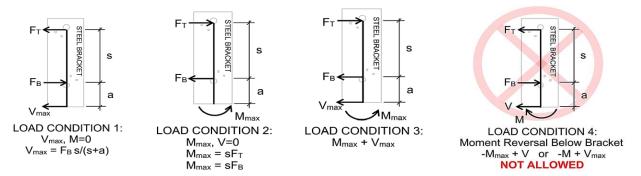



FIGURE 8.2B

The load on each fastener type (screw, bolt) within the fastener group is proportional to the ratio of the slip-modulus of the fastener type to the cumulative slip-modulus of the entire fastener group:  $N_s k_s / k_g$ ,  $N_b k_b / k_g$ , where  $N_s$  is the quantity of screws within the fastener group,  $N_b$  is the quantity of bolts in double shear within the fastener group,  $k_s$  is the slip-modulus of one screw in single shear,  $k_b$  is the slip-modulus of one bolt in double shear, and  $k_g$  is the cumulative slip-modulus of the entire fastener group (Table 7.1B). The slip-modulus of the screw fasteners does not equal the slip modulus of the bolt fastener(s):  $N_s k_s \neq N_b k_b$ . As a result, one fastener type is loaded to the maximum allowable or design lateral strength, while the second fastener type receives the balance of the load which will not reach the fastener's maximum capacity (Tables 8.2C and 8.2D).

The allowable bending and shear strength (ASD) and the design bending strength and shear strength (LRFD) of the steel-to-wood connection for each model is shown in Table 8.2E. The calculations are completed in Microsoft Excel (2016) using the listed equations.

# **GOVERNING CODE:**

# National Design Specification for Wood Construction, NDS (2015)

# **GOVERNING EQUATIONS:**

| Allowable Lateral Strength of Screws  | $Z'_s$ , $ASD N_s = N_s Z C_D C_\Delta$                 | NDS Table 11.3.1 |
|---------------------------------------|---------------------------------------------------------|------------------|
| Design Lateral Strength of Screws     | $Z'_{s, LRFD} N_s = \phi N_s Z \lambda C_{\Delta} K_F$  | NDS Table 11.3.1 |
| Allowable Lateral Strength of Bolt(s) | $Z'_{b, ASD} N_b = N_b Z C_D C_\Delta$                  | NDS Table 11.3.1 |
| Design Lateral Strength of Bolt(s)    | $Z'_{b, LRFD} N_b = \varphi N_b Z \lambda C_\Delta K_F$ | NDS Table 11.3.1 |

| $Z$ = Unadjusted reference lateral (shear) design value for one fastener $Z'$ = Adjusted lateral design value for one fastener $C_D$ = ASD load duration factor | NDS Table 12.3.1A<br>NDS Table 11.3.1<br>NDS Table 2.3.2 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| $C_{\Delta}$ = Geometry factor                                                                                                                                  | NDS 12.5.1                                               |
| N = total quantity of fasteners in the group                                                                                                                    |                                                          |
| φ = LRFD resistance factor                                                                                                                                      | NDS Table N2                                             |
| λ = LRFD time effect factor                                                                                                                                     | NDS Table N3                                             |
| K <sub>F</sub> = ASD to LRFD format conversion factor                                                                                                           | NDS Table N1                                             |
| Subscript "s" = screws                                                                                                                                          |                                                          |
| Subscript "b" = bolts                                                                                                                                           |                                                          |

| Allowable Lateral Strength of Fastener Group | $V_n/\Omega = min [Z'_{s, ASD}(k_g/k_s), Z'_{b, ASD}(k_g/k_b)]$                    |
|----------------------------------------------|------------------------------------------------------------------------------------|
| Design Lateral Strength of Fastener Group    | $\varphi V_n = \min \left[ Z'_{s, LRFD} (k_g/k_s), Z'_{b, LRFD} (k_g/k_b) \right]$ |

| Allowable Bending Strength of Connection     | $M_n/\Omega = s NZ'_{ASD}$       |
|----------------------------------------------|----------------------------------|
| <b>Design Bending Strength of Connection</b> | $\phi M_n = s NZ'_{LRFD}$        |
| Allowable Shear Strength of Connection       | $V_n/\Omega = NZ'_{ASD} s/(s+a)$ |
| <b>Design Shear Strength of Connection</b>   | $\phi V_n = NZ'_{LRFD} s/(s+a)$  |

s = distance between the centroids of the fastener groups

a = distance from bottom of bracket to centroid of the bottom fastener group

TABLE 8.2A: ADJUSTED LATERAL DESIGN VALUE OF ONE SCREW: NDS Table 12.3.1A (Yield Limit Equations)

| ASD Adjusted Lateral Design Value (lbs)     | Z's, ASD                         | 655   |                    | LRFD Adjusted Lateral Design Value (lbs) |                      |       |       | 884              |        |
|---------------------------------------------|----------------------------------|-------|--------------------|------------------------------------------|----------------------|-------|-------|------------------|--------|
| Geometry Factor                             | $C_{\scriptscriptstyle{\Delta}}$ | 1     |                    | ASD to LRFD format conversion factor     |                      |       | $K_F$ | 3.32             |        |
| ASD Load Duration Factor                    | $C_D$                            | 1.6   |                    | LRFD time effect factor                  |                      |       | λ     | 1                |        |
| Lateral Design Value (lbs)                  | Z                                | 410   |                    | LRFD resistan                            | ce factor            |       | ф     | 0.65             |        |
| Specific Gravity of Wood Member             | G                                | 0.55  | р                  | 2.8                                      | F <sub>es</sub>      | 61800 |       | $D_r$            | 0.243  |
| Minimum Allowed Penetration, $p_{min} = 6D$ | $p_{min}$                        | 1.5   | Ko                 | 2.930                                    | F es, perp           | 61800 |       | IV               | 522.8  |
| Screw Penetration into main member (in)     | р                                | 2.75  | $R_t$              | 11.000                                   | F <sub>es, par</sub> | 61800 |       | III s            | 409.7  |
| Thickness of Wood Member (in)               | $I_{m}$                          | 4.5   | $R_{e}$            | 0.089                                    | <b>k</b> 3           | 7.471 |       | III <sub>m</sub> | 587.1  |
| Thickness of Steel Plate Member (in)        | $I_s$                            | 0.25  | $F_{\it em}$       | 5526                                     | k <sub>2</sub>       | 0.549 |       | II               | 522.7  |
| Screw Length (in)                           | L                                | 3     | $F_{\it em, perp}$ | 5526                                     | k <sub>1</sub>       | 0.408 |       | 1 <sub>s</sub>   | 1281.3 |
| Screw Diameter (in)                         | D                                | 0.243 | $F_{\it em, par}$  | 5526                                     | 2+R <sub>e</sub>     | 2.1   |       | I <sub>m</sub>   | 1260.2 |
|                                             |                                  |       | $F_{yb}$           | 199000                                   | 1+R <sub>e</sub>     | 1.1   |       | θ                | 90     |

TABLE 8.2B: ADJUSTED LATERAL DESIGN VALUE OF ONE BOLT (DOUBLE SHEAR): NDS Table 12.3.1A (Yield Limit Equations)

| Bolt Diameter (in)                      | D                                | 0.5    | F <sub>em, par</sub>                     | 6160                    | Κ <sub>θ</sub>        | 1.250   |      | I <sub>m</sub> | 1631 |
|-----------------------------------------|----------------------------------|--------|------------------------------------------|-------------------------|-----------------------|---------|------|----------------|------|
| Main Member Thickness (in)              | $t_{\text{m, min}}$              | 4.5    | $F_{\text{em, perp}}$                    | 3626                    | 1+R <sub>e</sub>      | 1.042   |      | $III_s$        | 1494 |
| Side Member Thickness (in)              | $t_s$                            | 0.25   | $F_{em}$                                 | 3626                    | 2+R <sub>e</sub>      | 2.042   |      | IV             | 1960 |
| Dowel Bearing Strength (psi)            | $F_{es}$                         | 87000  | $R_{e}$                                  | 0.042                   | k <sub>3</sub>        | 13.463  |      |                |      |
| Bolt Yield Strength (psi)               | $F_{yb}$                         | 106000 |                                          |                         |                       |         |      |                |      |
| Max Angle Load to Grain (deg)           | θ                                | 90     |                                          |                         |                       |         |      |                |      |
| Specific Gravity                        | G                                | 0.55   |                                          |                         |                       |         |      |                |      |
| Reference Lateral Design Value (Z)      | Z                                | 1494   |                                          | LRFD resis              | stance factor         |         | ф    | 0.65           |      |
| ASD Load Duration Factor                | $C_D$                            | 1.6    |                                          | LRFD time effect factor |                       |         | λ    | 1              |      |
| Geometry Factor                         | $C_{\scriptscriptstyle{\Delta}}$ | 1      | ASD to LRFD format conversion factor     |                         |                       | $K_{F}$ | 3.32 |                |      |
| ASD Adjusted Lateral Design Value (lbs) | Z' <sub>b, ASD</sub>             | 2391   | LRFD Adjusted Lateral Design Value (lbs) |                         | Z' <sub>b, LRFD</sub> | 3224    |      |                |      |

|        | TABLE 8.2C: LATERAL (SHEAR) STRENGTH OF EACH FASTENER GROUP |         |         |                          |                          |                         |                         |      |              |  |  |  |  |
|--------|-------------------------------------------------------------|---------|---------|--------------------------|--------------------------|-------------------------|-------------------------|------|--------------|--|--|--|--|
|        |                                                             |         |         |                          |                          |                         |                         | LRFD | ASD          |  |  |  |  |
|        | $k_s$                                                       | $k_b$   | $k_{g}$ | $Z'_{s, LRFD} (k_g/k_s)$ | $Z'_{b, LRFD} (k_g/k_b)$ | $Z'_{s, ASD} (k_g/k_s)$ | $Z'_{b, ASD} (k_g/k_b)$ | φV   | $V_n/\Omega$ |  |  |  |  |
| Model  | (lb/in)                                                     | (lb/in) | (lb/in) | (lb)                     | (lb)                     | (lb)                    | (lb)                    | (lb) | (lb)         |  |  |  |  |
| SWP 46 | 32143                                                       | 95459   | 159745  | 4394                     | 5396                     | 3258                    | 4001                    | 4394 | 3258         |  |  |  |  |
| SWP 63 | 32143                                                       | 95459   | 159745  | 4394                     | 5396                     | 3258                    | 4001                    | 4394 | 3258         |  |  |  |  |
| SWP 64 | 32143                                                       | 95459   | 159745  | 4394                     | 5396                     | 3258                    | 4001                    | 4394 | 3258         |  |  |  |  |
| SWP 66 | 32143                                                       | 95459   | 159745  | 4394                     | 5396                     | 3258                    | 4001                    | 4394 | 3258         |  |  |  |  |
| SWP 83 | 32143                                                       | 95459   | 224032  | 6162                     | 7567                     | 4569                    | 5611                    | 6162 | 4569         |  |  |  |  |
| SWP 84 | 32143                                                       | 95459   | 224032  | 6162                     | 7567                     | 4569                    | 5611                    | 6162 | 4569         |  |  |  |  |
| SWP 85 | 32143                                                       | 95459   | 224032  | 6162                     | 7567                     | 4569                    | 5611                    | 6162 | 4569         |  |  |  |  |
| SWP 88 | 32143                                                       | 95459   | 224032  | 6162                     | 7567                     | 4569                    | 5611                    | 6162 | 4569         |  |  |  |  |

|        | $N_s$ | $N_b$ | Load Dis | tribution | Load / Strength |       |  |
|--------|-------|-------|----------|-----------|-----------------|-------|--|
| Model  |       |       | Screws   | Bolts     | Screws          | Bolts |  |
| SWP 46 | 2     | 1     | 40.2%    | 59.8%     | 100.0%          | 81%   |  |
| SWP 63 | 2     | 1     | 40.2%    | 59.8%     | 100.0%          | 81%   |  |
| SWP 64 | 2     | 1     | 40.2%    | 59.8%     | 100.0%          | 81%   |  |
| SWP 66 | 2     | 1     | 40.2%    | 59.8%     | 100.0%          | 81%   |  |
| SWP 83 | 4     | 1     | 57.4%    | 42.6%     | 100.0%          | 81%   |  |
| SWP 84 | 4     | 1     | 57.4%    | 42.6%     | 100.0%          | 81%   |  |
| SWP 85 | 4     | 1     | 57.4%    | 42.6%     | 100.0%          | 81%   |  |
| SWP 88 | 4     | 1     | 57.4%    | 42.6%     | 100.0%          | 81%   |  |

| T.     | TABLE 8.2E: SHEAR AND BENDING STRENGTH OF STEEL-TO-WOOD CONNECTION |       |                 |                 |                   |              |  |  |  |  |  |
|--------|--------------------------------------------------------------------|-------|-----------------|-----------------|-------------------|--------------|--|--|--|--|--|
|        |                                                                    |       | LR              | RFD .           | A                 | SD           |  |  |  |  |  |
|        | а                                                                  | s     | φV <sub>n</sub> | фM <sub>n</sub> | V <sub>n</sub> /Ω | $M_n/\Omega$ |  |  |  |  |  |
| Model  | (in)                                                               | (in)  | (lb)            | (lb-in)         | (lb)              | (lb-in)      |  |  |  |  |  |
| SWP 46 | 3.63                                                               | 8.25  | 3050            | 36250           | 2260              | 26880        |  |  |  |  |  |
| SWP 63 | 3.63                                                               | 8.25  | 3050            | 36250           | 2260              | 26880        |  |  |  |  |  |
| SWP 64 | 3.63                                                               | 13.25 | 3450            | 58220           | 2560              | 43160        |  |  |  |  |  |
| SWP 66 | 3.63                                                               | 8.25  | 3050            | 36250           | 2260              | 26880        |  |  |  |  |  |
| SWP 83 | 4.68                                                               | 11.65 | 4400            | 71780           | 3260              | 53220        |  |  |  |  |  |
| SWP 84 | 4.68                                                               | 11.65 | 4400            | 71780           | 3260              | 53220        |  |  |  |  |  |
| SWP 85 | 4.68                                                               | 11.65 | 4400            | 71780           | 3260              | 53220        |  |  |  |  |  |
| SWP 88 | 4.68                                                               | 11.65 | 4400            | 71780           | 3260              | 53220        |  |  |  |  |  |

#### 9. STURDI-WALL PLUS: BENDING STRENGTH OF STEEL BRACKET (SADDLE AND REBAR)

The bending strength calculations for the Sturdi-Wall Plus bracket (saddle and rebar) are presented in both the LRFD and ASD formats in accordance with the provisions of the governing code (AISC 360-16). The calculations for the rebar development into the concrete pier are prepared using ACI 318-14. The calculations are completed using the finite element analysis in Visual Analysis by IES and Microsoft Excel (2016) using the listed equations.

In Visual Analysis, a 1000 lb-in moment is applied to each model in the form of horizontal forces,  $F_{\mathsf{T}}$  and  $F_{\mathsf{B}}$ , equal in magnitude and opposite in direction, applied at the centroid of the top and bottom fastener group, respectively. The restraint conditions for the finite element analysis models are described in Section 7. The resulting maximum internal bending moment,  $M_{\mathsf{max}}$ , in units of (lb-in)/in, located anywhere in the steel saddle, is reported in Table 9B. Figure 9 shows the concentration of the bending stresses in the steel saddle. To determine the design (LRFD) and allowable (ASD) bending strengths of the steel saddle, the ratio (1000 /  $M_{\mathsf{max}}$ ) is multiplied by the design (LRFD) and allowable (ASD) strengths of the steel saddle plate (the plate design is based on the 1" wide segment to be consistent with internal moment units used in the Visual Analysis). This method ensures that, if a moment equal to the design (LRFD) or allowable (ASD) strength of the steel bracket is applied to the bracket, the resulting maximum internal bending moment located anywhere in the saddle is equal to the design (LRFD) and allowable (ASD) bending strength of the steel plate from which the saddle is made

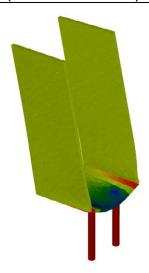



Figure 9: Visual Analysis Model

The design and allowable bending strengths for each model based on the tensile strength of rebar and weld connections are shown in Table 9A. The design and allowable bending strength of the steel bracket is controlled by the bending strength of the 1/4" thick steel saddle (Table 9B). Calculations for fastener bearing against the hole edges, calculations for shear strength and tension strength of steel plates, and calculations for block shear strength are not expected to control the design and are not provided. The minimum length required for the rebar to achieve full strength is provided in Table 9C. The rebar in models SWP 63 and SWP83 can achieve only 87% and 53% of full development, respectively. As a result, the design and allowable bending strength for this model in Table 9A is reduced accordingly.

#### **GOVERNING CODE:**

Specification for Structural Steel Buildings ANSI/AISC 360-16 Building Code Requirements for Structural Concrete, ACI 318-14

#### **GOVERNING EQUATIONS:**

• REBAR TENSILE STRENGTH: AISC 360, SECTION D2

| 1122/111 12110122 011121101111 |                                   |                 |        |
|--------------------------------|-----------------------------------|-----------------|--------|
| Design Tensile Strength        | $\Phi P_n = \Phi F_y A_g$         | ф = 0.90        | (D2-1) |
| Allowable Tensile Strength     | $P_n / \Omega = F_y A_g / \Omega$ | $\Omega = 1.67$ | (D2-1) |

• WELDS: AISC 360, SECTION J2

| Design Strength    | $\Phi R_n = \Phi F_w A_w$                                              | ф = 0.75                                                                  | (J2-3)    |  |  |  |  |  |
|--------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------|--|--|--|--|--|
| Allowable Strength | $R_n / \Omega = F_w A_w / \Omega$                                      | $\Omega$ = 2.00                                                           | (J2-3)    |  |  |  |  |  |
|                    | $F_w = 0.60F_{EXX}$                                                    |                                                                           | (T. J2.5) |  |  |  |  |  |
|                    | $A_w$ = Lt <sub>e</sub> , where L = length of weld, t <sub>e</sub> = e | $t_w = Lt_e$ , where L = length of weld, $t_e$ = effective weld thickness |           |  |  |  |  |  |

• BENDING IN STEEL SADDLE: AISC 360, SECTIONS F1 & F11

| Design Bending Strength    | $\phi M_n = \phi F_y Z$         | ф = 0.90        | (F1, F11) |
|----------------------------|---------------------------------|-----------------|-----------|
| Allowable Bending Strength | $M_n / \Omega = M_n Z / \Omega$ | $\Omega = 1.67$ | (F1, F11) |

• REBAR DEVELOPMENT REQUIREMENTS, ACI 318, Equation 25.4.2.3a

|                    | ,,                                                                        | -                        |
|--------------------|---------------------------------------------------------------------------|--------------------------|
| Development Length | $L_d = [(3/40)(f_y/\sqrt{f_c}) (\Psi_t \ \Psi_e \ \Psi_s) / c_b] \ d_b^2$ | (ACI 318, Eq. 25.4.2.3a) |

| REBAR PROPERTIES (ASTM A706)                               |         |                 | WELD PROPERTIES                                              |                           |
|------------------------------------------------------------|---------|-----------------|--------------------------------------------------------------|---------------------------|
| Rebar Yield Strength, F <sub>y</sub>                       | 60      | ksi             | Effective Weld Thickness (throat) , t <sub>e</sub>           | 0.25 in                   |
| #4 Rebar Section Area, A <sub>s</sub>                      | 0.20    | in <sup>2</sup> | Total Weld Length, L, for #4 rebar                           | 1.57 in/bar               |
| #5 Rebar Section Area, A <sub>s</sub> 0.31 in <sup>2</sup> |         | in <sup>2</sup> | Total Weld Length, L, for #5 rebar                           | 1.96 in/bar               |
|                                                            |         |                 | Effective Weld Area, A <sub>w</sub> = Lt <sub>e</sub> for #4 | 0.39 in <sup>2</sup> /bar |
| STEEL PLATE PROP                                           | PERTIES | 3               | Effective Weld Area, A <sub>w</sub> = Lt <sub>e</sub> for #5 | 0.49 in <sup>2</sup> /bar |
| Minimum Yield Strength, F <sub>y</sub>                     | 40      | ksi             | Electrode Classification Number                              | 70 ksi                    |
| Thickness of steel, t                                      | 0.25    | in              | Nominal Strength of Weld Metal, $F_{\rm w}$                  | 42 ksi                    |

| Table  | 9A: BE   | NDING S         | TRENG        | TH BASE                                      | ED ON R    | EBAR A         | ND WEL | D STREM         | NGTH         |
|--------|----------|-----------------|--------------|----------------------------------------------|------------|----------------|--------|-----------------|--------------|
|        |          |                 |              |                                              |            |                |        | LRFD            | ASD          |
|        | $N_TA_s$ | φP <sub>n</sub> | $P_n/\Omega$ | N <sub>T</sub> A <sub>w</sub> <sup>(1)</sup> | $\phi R_n$ | $R_n / \Omega$ | d      | фM <sub>n</sub> | $M_n/\Omega$ |
| Model  | (in²)    | (lbf)           | (lbf)        | (in²)                                        | (lbf)      | (lbf)          | (in)   | (in-lb)         | (in-lb)      |
| SWP 46 | 0.40     | 21600           | 14371        | 0.79                                         | 24728      | 16485          | 3.1    | 58190           | 38720        |
| SWP 63 | 0.40     | 21600           | 14371        | 0.79                                         | 24728      | 16485          | 3.1    | 58190           | 38720        |
| SWP 64 | 0.40     | 21600           | 14371        | 0.79                                         | 24728      | 16485          | 3.1    | 66960           | 44550        |
| SWP 66 | 0.40     | 21600           | 14371        | 0.79                                         | 24728      | 16485          | 3.1    | 66960           | 44550        |
| SWP 83 | 0.62     | 33480           | 22275        | 0.98                                         | 30870      | 20580          | 4.9    | 79890           | 53260        |
| SWP 84 | 0.62     | 33480           | 22275        | 0.98                                         | 30870      | 20580          | 4.9    | 151260          | 100840       |
| SWP 85 | 0.62     | 33480           | 22275        | 0.98                                         | 30870      | 20580          | 4.9    | 151260          | 100840       |
| SWP 85 | 0.62     | 33480           | 22275        | 0.98                                         | 30870      | 20580          | 4.9    | 151260          | 100840       |

A<sub>s</sub> = area of (one) tension rebar

 $M_n / \Omega = min(P_n/\Omega, R_n/\Omega) d$ 

| Tab      | Table 9B: BENDING STRENGTH BASED ON BENDING OF 1/4" SADDLE |            |            |                 |                                  |         |            |                 |              |  |  |  |
|----------|------------------------------------------------------------|------------|------------|-----------------|----------------------------------|---------|------------|-----------------|--------------|--|--|--|
|          | Bendii                                                     | ng Strengt | h of 1" wi | de Plate S      | Bending Strength of Steel Saddle |         |            |                 |              |  |  |  |
|          |                                                            |            |            |                 |                                  |         |            | LRFD            | ASD          |  |  |  |
|          | W                                                          | t          | Z          | фM <sub>n</sub> | $M_n/\Omega$                     | М       | $M_{max}$  | фM <sub>n</sub> | $M_n/\Omega$ |  |  |  |
| Model ID | (in)                                                       | (in)       | (in³)      | (in-lb)         | (in-lb)                          | (in-lb) | (in-lb/in) | (in-lb)         | (in-lb)      |  |  |  |
| SWP 46   | 1.00                                                       | 0.50       | 0.0625     | 2250            | 1497                             | 1000    | 48.00      | 46880           | 31190        |  |  |  |
| SWP 63   | 1.00                                                       | 0.50       | 0.0625     | 2250            | 1497                             | 1000    | 48.00      | 46880           | 31190        |  |  |  |
| SWP 64   | 1.00                                                       | 0.50       | 0.0625     | 2250            | 1497                             | 1000    | 48.00      | 46880           | 31190        |  |  |  |
| SWP 66   | 1.00                                                       | 0.50       | 0.0625     | 2250            | 1497                             | 1000    | 48.00      | 46880           | 31190        |  |  |  |
| SWP 83   | 1.00                                                       | 0.50       | 0.0625     | 2250            | 1497                             | 1000    | 28.00      | 80360           | 53460        |  |  |  |
| SWP 84   | 1.00                                                       | 0.50       | 0.0625     | 2250            | 1497                             | 1000    | 28.00      | 80360           | 53460        |  |  |  |
| SWP 85   | 1.00                                                       | 0.50       | 0.0625     | 2250            | 1497                             | 1000    | 28.00      | 80360           | 53460        |  |  |  |
| SWP 88   | 1.00                                                       | 0.50       | 0.0625     | 2250            | 1497                             | 1000    | 28.00      | 80360           | 53460        |  |  |  |

w = width of plate sample

Design Bending Strength of Steel Saddle,  $\phi M_n = (M / M_{max})$  (design bending strength of steel plate) Allowable Bending Strength of Steel Saddle,  $M_n / \Omega = (M / M_{max})$  (allowable bending strength of steel plate)

 $N_T$  = quantity of tension rebar

d = distance between compression force and tension rebar

 $<sup>\</sup>phi M_n = min(\phi P_n, \phi R_n) d$ 

t = thickness of plate

 $Z = w t^2 / 4$ 

|          | TABLE 9C: REBAR DEVELOPMENT LENGTH |                |                |                 |            |                |            |                       |                        |                |                |           |
|----------|------------------------------------|----------------|----------------|-----------------|------------|----------------|------------|-----------------------|------------------------|----------------|----------------|-----------|
|          | #                                  | d <sub>b</sub> | f <sub>y</sub> | f' <sub>c</sub> | $\Psi_{t}$ | $\Psi_{\rm e}$ | $\Psi_{s}$ | C <sub>b, cover</sub> | C <sub>b, 1/2 sp</sub> | L <sub>d</sub> | L <sub>r</sub> | Developed |
| Model ID |                                    | (in)           | (ksi)          | (ksi)           |            |                |            | (in)                  | (in)                   | (in)           | (in)           | %         |
| SWP 46   | 4                                  | 0.5            | 60000          | 3000            | 1.0        | 1.5            | 0.8        | 2                     | 1.19                   | 20.7           | 18             | 87%       |
| SWP 63   | 4                                  | 0.5            | 60000          | 3000            | 1.0        | 1.5            | 8.0        | 2                     | 1.19                   | 20.7           | 18             | 87%       |
| SWP 64   | 4                                  | 0.5            | 60000          | 3000            | 1.0        | 1.2            | 0.8        | 2                     | 1.94                   | 10.2           | 18             | 100%      |
| SWP 66   | 4                                  | 0.5            | 60000          | 3000            | 1.0        | 1.5            | 8.0        | 2                     | 1.69                   | 14.6           | 18             | 100%      |
| SWP 83   | 5                                  | 0.625          | 60000          | 3000            | 1.0        | 1.5            | 0.8        | 2                     | 1.13                   | 34.1           | 18             | 53%       |
| SWP 84   | 5                                  | 0.625          | 60000          | 3000            | 1.0        | 1.2            | 0.8        | 2                     | 1.88                   | 16.4           | 18             | 100%      |
| SWP 85   | 5                                  | 0.625          | 60000          | 3000            | 1.0        | 1.2            | 0.8        | 2                     | 2.59                   | 15.4           | 18             | 100%      |
| SWP 88   | 5                                  | 0.625          | 60000          | 3000            | 1.0        | 1.2            | 8.0        | 2                     | 2.84                   | 15.4           | 18             | 100%      |

#### 10.1 STURDI-WALL PLUS: UPLIFT (TENSION) STRENGTH\*

#### \*WITH SDS SCREWS BY SIMPSON STRONG TIE

The calculations are presented in both the LRFD and ASD formats according to provisions of the governing code (AISC 360-16 and NDS 2015). The calculations are completed in Microsoft Excel (2016) using the listed equations. The internal loads in the steel saddle bracket are determined using Visual Analysis (v.18) by IES, Inc.

The rebar in SWP83 model can achieve only 66% of full development. As a result, the design and allowable tensile strength for this model in Table 3A is reduced by a factor of 0.66.

The load on each fastener type (screw, bolt) is proportional to the ratio of the slip-modulus of the fastener type to the cumulative slip-modulus all fasteners:  $N_s k_s / k_g$ ,  $N_b k_b / k_g$ , where  $N_s$  is the quantity of screws per bracket,  $N_b$  is the quantity of bolts in double shear per bracket,  $k_s$  is the slip-modulus of one screw in single shear,  $k_b$  is the slip-modulus of one bolt in double shear, and  $k_g$  is the cumulative slip-modulus of all fasteners (see Tables 10E and 10G). The slip-modulus of the screw fasteners does not equal the slip modulus of the bolt fastener(s):  $N_s k_s \neq N_b k_b$ . As a result, one fastener type is loaded to the maximum allowable or design lateral strength, while the second fastener type receives the balance of the load which will not reach the fastener's maximum capacity (Table 10G). The discussion and calculations for slip-modulus are provided in Section 7.

Table 10A shows tensile strength of the SWP brackets based on tensile strength of rebar, weld strength, and tensile strength of vertical plates. Table 10B shows the tensile strength of the SWP brackets based on the bending strength of the steel saddle (controls the design). Table 10F shows the tensile strength of the SWP steel brackets based on the lateral (shear) strength of the steel-to-wood connection.

#### **GOVERNING CODE:**

Specification for Structural Steel Buildings ANSI/AISC 360-16 National Design Specification for Wood Construction, NDS (2015)

#### **GOVERNING EQUATIONS:**

#### • REBAR AND STEEL SADDLE: AISC 360, SECTION D2

|          | Design Tensile Strength       | $\Phi P_n = \Phi F_y A_g$         | (tensile yielding) | ф = 0.90        | (D2-1) |
|----------|-------------------------------|-----------------------------------|--------------------|-----------------|--------|
|          | Design Tensile Strength       | $\Phi P_n = \Phi F_u A_e$         | (tensile rupture)  | ф = 0.75        | (D2-2) |
|          | Allements Terreits Ofmer with | $P_n / \Omega = F_y A_g / \Omega$ | (tensile yielding) | Ω = 1.67        | (D2-1) |
| <b>'</b> | Allowable Tensile Strength    | $P_n / \Omega = F_u A_e / \Omega$ | (tensile rupture)  | $\Omega = 2.00$ | (D2-2) |

#### • WELDS: AISC 360, SECTION J2

| Design Strength    | $\Phi R_n = \Phi F_w A_w$         | ф = 0.75        | (J2-3)    |
|--------------------|-----------------------------------|-----------------|-----------|
| Allowable Strength | $R_n / \Omega = F_w A_w / \Omega$ | $\Omega = 2.00$ | (J2-3)    |
|                    | $F_{w} = 0.60F_{EXX}$             |                 | (T. J2.5) |

#### • BENDING IN STEEL SADDLE: AISC 360, SECTIONS F1 & F11

| Design Bending Strength    | $\phi M_n = \phi F_y Z$         | $\Phi = 0.90$   | (F1, F11) |
|----------------------------|---------------------------------|-----------------|-----------|
| Allowable Bending Strength | $M_n / \Omega = M_n Z / \Omega$ | $\Omega$ = 1.67 | (F1, F11) |

#### • STEEL-TO-WOOD CONNECTION (BOLT, SCREWS): NDS 2015

Subscript "b" = bolts

| Allowable Lateral Strength of Screws  | $Z'_s$ , $ASD N_s = N_s Z C_D C_\Delta$                 | NDS Table 11.3.1 |
|---------------------------------------|---------------------------------------------------------|------------------|
| Design Lateral Strength of Screws     | $Z'_{s, LRFD} N_s = \phi N_s Z \lambda C_{\Delta} K_F$  | NDS Table 11.3.1 |
| Allowable Lateral Strength of Bolt(s) | $Z'_{b, ASD} N_b = N_b Z C_D C_\Delta$                  | NDS Table 11.3.1 |
| Design Lateral Strength of Bolt(s)    | $Z'_{b, LRFD} N_b = \varphi N_b Z \lambda C_\Delta K_F$ | NDS Table 11.3.1 |

Z = Unadjusted reference lateral (shear) design value for one fastener NDS Table 12.3.1A Z' = Adjusted lateral design value for one fastener NDS Table 11.3.1  $C_D$  = ASD load duration factor NDS Table 2.3.2  $C_{\Delta}$  = Geometry factor NDS 12.5.1 N = total quantity of fasteners in the group  $\phi$  = LRFD resistance factor NDS Table N2  $\lambda$  = LRFD time effect factor NDS Table N3 K<sub>F</sub> = ASD to LRFD format conversion factor NDS Table N1 Subscript "s" = screws

Allowable Lateral Strength of Mixed Fasteners  $V_a = min \left[ Z'_{s, ASD} (k_g/k_s), Z'_{b, ASD} (k_g/k_b) \right]$ Design Lateral Strength of Mixed Fasteners  $\phi V = min \left[ Z'_{s, LRFD} (k_g/k_s), Z'_{b, LRFD} (k_g/k_b) \right]$ 

#### **CALCULATIONS:**

| REBAR PROPER                             | TIES       | WELD PROPERTIES                                           |        |  |  |  |  |
|------------------------------------------|------------|-----------------------------------------------------------|--------|--|--|--|--|
| Rebar Yield Strength, F <sub>y</sub>     | 60 ksi     | Effective Weld Thickness (throat), t <sub>e</sub> 0.25 in |        |  |  |  |  |
|                                          |            | Electrode Classification Number                           | 70 ksi |  |  |  |  |
| STEEL SADDLE BRACKET                     | PROPERTIES | Nominal Strength of Weld Metal, F <sub>w</sub>            | 42 ksi |  |  |  |  |
| Minimum Tensile Strength, F <sub>u</sub> | 55 ksi     |                                                           |        |  |  |  |  |
| Minimum Yield Strength, Fy               | 40 ksi     |                                                           |        |  |  |  |  |
| Thickness of steel, t                    | 0.250 in   |                                                           |        |  |  |  |  |

# TABLE 10.1A: DESIGN TENSILE STRENGTH AND ALLOWABLE TENSILE STRENGTH (REBAR, WELDS, AND VERTICAL STEEL PLATES)

|          |                        | Tensile    | Strength o     | f Rebar an         | d Welds    |                | Tensile Strength of Steel Saddle Vertical Plates |            |                |         |                 |                |  |
|----------|------------------------|------------|----------------|--------------------|------------|----------------|--------------------------------------------------|------------|----------------|---------|-----------------|----------------|--|
|          | Rebar Tensile Strength |            |                | W                  | eld Streng | jth            | Yielding                                         |            |                | Rupture |                 |                |  |
|          |                        | LRFD       | ASD            |                    | LRFD       | ASD            |                                                  | LRFD       | ASD            |         | LRFD            | ASD            |  |
|          | $A_s$                  | $\phi R_n$ | $R_n / \Omega$ | $A_{w}$            | $\phi R_n$ | $R_n / \Omega$ | $\mathbf{A}_{g}$                                 | $\phi R_n$ | $R_n / \Omega$ | $A_{e}$ | φR <sub>n</sub> | $R_n / \Omega$ |  |
| Model ID | (in²)                  | (lb)       | (lb)           | (in <sup>2</sup> ) | (lb)       | (lb)           | (in²)                                            | (lb)       | (lb)           | (in²)   | (lb)            | (lb)           |  |
| SWP 46   | 0.80                   | 43200      | 28740          | 1.57               | 49460      | 32970          | 2.5                                              | 90000      | 59880          | 2.19    | 90338           | 60225          |  |
| SWP 63   | 0.80                   | 43200      | 28740          | 1.57               | 49460      | 32970          | 2.5                                              | 90000      | 59880          | 2.19    | 90338           | 60225          |  |
| SWP 64   | 0.80                   | 43200      | 28740          | 1.57               | 49460      | 32970          | 2.5                                              | 90000      | 59880          | 2.19    | 90338           | 60225          |  |
| SWP 66   | 0.80                   | 43200      | 28740          | 1.57               | 49460      | 32970          | 2.5                                              | 90000      | 59880          | 2.19    | 90338           | 60225          |  |
| SWP 83   | 1.24                   | 44194      | 44550          | 1.96               | 61740      | 41160          | 3.5                                              | 126000     | 83832          | 3.19    | 131588          | 87725          |  |
| SWP 84   | 1.24                   | 66960      | 44550          | 1.96               | 61740      | 41160          | 3.5                                              | 126000     | 83832          | 3.19    | 131588          | 87725          |  |
| SWP 85   | 1.24                   | 66960      | 44550          | 1.96               | 61740      | 41160          | 3.5                                              | 126000     | 83832          | 3.19    | 131588          | 87725          |  |
| SWP 88   | 1.24                   | 66960      | 44550          | 1.96               | 61740      | 41160          | 3.5                                              | 126000     | 83832          | 3.19    | 131588          | 87725          |  |

| TABLE 10.1B: | TABLE 10.1B: DESIGN TENSILE STRENGTH AND ALLOWABLE TENSILE STRENGTH AS DEFINED BY THE BENDING STRENGTH OF THE STEEL SADDLE |      |                |       |                 |              |         |                 |                |  |  |  |
|--------------|----------------------------------------------------------------------------------------------------------------------------|------|----------------|-------|-----------------|--------------|---------|-----------------|----------------|--|--|--|
|              |                                                                                                                            |      | _              | -     |                 | M / O        |         | LRFD            | ASD            |  |  |  |
|              | τ                                                                                                                          | w    | F <sub>y</sub> |       | фM <sub>n</sub> | $M_n/\Omega$ | k       | φT <sub>n</sub> | $T_n / \Omega$ |  |  |  |
| Model ID     | (in)                                                                                                                       | (in) | (ksi)          | (in³) | (in-lb)         | (in-lb)      | (lb-in) | (lb)            | (lb)           |  |  |  |
| SWP 46       | 0.250                                                                                                                      | 5.00 | 40             | 0.078 | 2813            | 1871         | 0.2725  | 10320           | 6870           |  |  |  |
| SWP 63       | 0.250                                                                                                                      | 5.00 | 40             | 0.078 | 2813            | 1871         | 0.2725  | 10320           | 6870           |  |  |  |
| SWP 64       | 0.250                                                                                                                      | 5.00 | 40             | 0.078 | 2813            | 1871         | 0.3102  | 9070            | 6030           |  |  |  |
| SWP 66       | 0.250                                                                                                                      | 5.00 | 40             | 0.078 | 2813            | 1871         | 0.3005  | 9360            | 6230           |  |  |  |
| SWP 83       | 0.250                                                                                                                      | 7.00 | 40             | 0.109 | 3938            | 2620         | 0.2507  | 15710           | 10450          |  |  |  |
| SWP 84       | 0.250                                                                                                                      | 7.00 | 40             | 0.109 | 3938            | 2620         | 0.2898  | 13590           | 9040           |  |  |  |
| SWP 85       | 0.250                                                                                                                      | 7.00 | 40             | 0.109 | 3938            | 2620         | 0.3191  | 12340           | 8210           |  |  |  |
| SWP 88       | 0.250                                                                                                                      | 7.00 | 40             | 0.109 | 3938            | 2620         | 0.3271  | 12040           | 8010           |  |  |  |

- (1) t = thickness of steel plate (saddle)
- (2) w = width of steel plate (saddle)
- (3) Z is plastic section modulus =  $w t^2 / 4$
- (3) Factor "k" represents the maximum moment found anywhere in the steel saddle under 1 pound of tension force. This factor was determined using a two dimensional computer model for each SWP model and equals Moment divided by total applied downward force, k = M/F.
- (4) Tension strength, as defined by the bending strength of the steel saddle bracket, is determined using the following expressions:  $\Phi T_n = \Phi M_n/k$ ,  $T_n / \Omega = (M_n/k) / \Omega$

TABLE 10.1C: ADJUSTED LATERAL DESIGN VALUE OF ONE SCREW: NDS Table 12.3.1A

|                                                    |                                  | SDS   | F yb                                 | 164000                                             | 1+R <sub>e</sub>      | 1.1   | θ                | 0      |      |
|----------------------------------------------------|----------------------------------|-------|--------------------------------------|----------------------------------------------------|-----------------------|-------|------------------|--------|------|
| Screw Diameter (in)                                | D                                | 0.242 | F <sub>em, par</sub>                 | 5526                                               | $2+R_e$               | 2.1   | I <sub>m</sub>   | 1259.3 |      |
| Screw Length (in)                                  | L                                | 3     | F <sub>em, perp</sub>                | 5526                                               | k <sub>1</sub>        | 0.408 | Is               | 1280.4 |      |
| Thickness of Steel Plate Member (in)               | $I_s$                            | 0.25  | F <sub>em</sub>                      | 5526                                               | k <sub>2</sub>        | 0.536 | II               | 522.4  |      |
| Thickness of Wood Member (in)                      | $I_{m}$                          | 4.5   | $R_{e}$                              | 0.089                                              | <b>k</b> 3            | 6.944 | III <sub>m</sub> | 572.7  |      |
| Screw Penetration into main member (in)            | р                                | 2.75  | $R_t$                                | 11.000                                             | $F_{ m es,\ par}$     | 61800 | III s            | 380.5  |      |
| Minimum Allowed Penetration, p <sub>min</sub> = 6D | $p_{min}$                        | 1.5   | Ko                                   | 2.920                                              | F <sub>es, perp</sub> |       | IV               | 472.3  |      |
| Specific Gravity of Wood Member                    | G                                | 0.55  | р                                    | 2.8                                                | F <sub>es</sub>       | 61800 | $D_r$            | 0.242  |      |
| Lateral Design Value (lbs)                         | Z                                | 380   |                                      | LRFD resis                                         | stance facto          | or    |                  | ф      | 0.65 |
| ASD Load Duration Factor                           | $C_D$                            | 1.6   | LRFD time effect factor              |                                                    |                       |       | λ                | 1      |      |
| Geometry Factor                                    | $C_{\scriptscriptstyle{\Delta}}$ | 1     | ASD to LRFD format conversion factor |                                                    |                       |       |                  | $K_F$  | 3.32 |
| ASD Adjusted Lateral Design Value (lbs)            | Z's, ASD                         | 609   |                                      | LRFD Adjusted Lateral Design Value (lbs) Z's, LRFD |                       |       |                  |        |      |

TABLE 10.1D: ADJUSTED LATERAL DESIGN VALUE OF ONE BOLT (DOUBLE SHEAR): NDS Table 12.3.1A

| Bolt Diameter (in)                      | D                                | 0.5    | $F_{em,\;par}$        | 6160       | $K_{\theta}$     | 1.000             | $I_{m}$ | 3465                  |      |
|-----------------------------------------|----------------------------------|--------|-----------------------|------------|------------------|-------------------|---------|-----------------------|------|
| Main Member Thickness (in)              | $t_{\text{m, min}}$              | 4.5    | $F_{\text{em, perp}}$ | 3626       | 1+R <sub>e</sub> | 1.071             | $III_s$ | 2369                  |      |
| Side Member Thickness (in)              | $t_s$                            | 0.25   | $F_{em}$              | 6160       | $2+R_e$          | 2.071             | IV      | 3150                  |      |
| Dowel Bearing Strength (psi)            | $F_{es}$                         | 87000  | $R_{e}$               | 0.071      | $k_3$            | 10.192            |         |                       |      |
| Bolt Yield Strength (psi)               | $F_{yb}$                         | 106000 |                       |            |                  |                   |         |                       |      |
| Max Angle Load to Grain (deg)           | θ                                | 0      |                       |            |                  |                   |         |                       |      |
| Specific Gravity                        | G                                | 0.55   |                       |            |                  |                   |         |                       |      |
| Reference Lateral Design Value (Z)      | Ζ                                | 2369   | l                     | _RFD resis | tance facto      | r                 |         | ф                     | 0.65 |
| ASD Load Duration Factor                | $C_D$                            | 1.6    | l                     | RFD time   | effect facto     | or                |         | λ                     | 1    |
| Geometry Factor                         | $C_{\scriptscriptstyle{\Delta}}$ | 1      | 1                     | ASD to LRF | D format         | conversion factor |         | $K_F$                 | 3.32 |
| ASD Adjusted Lateral Design Value (lbs) | Z' <sub>b, ASD</sub>             | 3790   | l                     | -RFD Adjus | sted Latera      | l Design Value (I | bs)     | Z' <sub>b, LRFD</sub> | 5112 |

| TABL   | E 10.1E: F     | ASTENER        | SLIP-MO        | DULUS          |         |
|--------|----------------|----------------|----------------|----------------|---------|
|        | k <sub>s</sub> | k <sub>b</sub> | N <sub>s</sub> | N <sub>b</sub> | $k_g$   |
| Model  | (lb/in)        | (lb/in)        |                |                | (lb/in) |
| SWP 46 | 32143          | 95459          | 4              | 2              | 319491  |
| SWP 63 | 32143          | 95459          | 4              | 2              | 319491  |
| SWP 64 | 32143          | 95459          | 4              | 2              | 319491  |
| SWP 66 | 32143          | 95459          | 4              | 2              | 319491  |
| SWP 83 | 32143          | 95459          | 8              | 2              | 448063  |
| SWP 84 | 32143          | 95459          | 8              | 2              | 448063  |
| SWP 85 | 32143          | 95459          | 8              | 2              | 448063  |
| SWP 88 | 32143          | 95459          | 8              | 2              | 448063  |

|        | TABLE 10.1               | IF: TENSILE STRE         | NGTH BASED ON S         | STEEL-TO-WOOD S         | HEAR CONNECTIO | N            |
|--------|--------------------------|--------------------------|-------------------------|-------------------------|----------------|--------------|
|        |                          |                          |                         |                         | LRFD           | ASD          |
|        | $Z'_{s, LRFD} (k_g/k_s)$ | $Z'_{b, LRFD} (k_g/k_b)$ | $Z'_{s, ASD} (k_g/k_s)$ | $Z'_{b, ASD} (k_g/k_b)$ | $\phi V_n$     | $V_n/\Omega$ |
| Model  | (lb)                     | (lb)                     | (lb)                    | (lb)                    | (lb)           | (lb)         |
| SWP 46 | 8161                     | 17108                    | 6051                    | 12684                   | 8160           | 6050         |
| SWP 63 | 8161                     | 17108                    | 6051                    | 12684                   | 8160           | 6050         |
| SWP 64 | 8161                     | 17108                    | 6051                    | 12684                   | 8160           | 6050         |
| SWP 66 | 8161                     | 17108                    | 6051                    | 12684                   | 8160           | 6050         |
| SWP 83 | 11446                    | 23993                    | 8486                    | 17789                   | 11450          | 8490         |
| SWP 84 | 11446                    | 23993                    | 8486                    | 17789                   | 11450          | 8490         |
| SWP 85 | 11446                    | 23993                    | 8486                    | 17789                   | 11450          | 8490         |
| SWP 88 | 11446                    | 23993                    | 8486                    | 17789                   | 11450          | 8490         |

| TABLE 10.1G: LOAD DISTRIBUTION RATIO AND LOAD-TO-STRENGTH RATIO |          |           |                 |       |  |  |  |  |
|-----------------------------------------------------------------|----------|-----------|-----------------|-------|--|--|--|--|
|                                                                 | Load Dis | tribution | Load / Strength |       |  |  |  |  |
| Model                                                           | Screws   | Bolts     | Screws          | Bolts |  |  |  |  |
| SWP 46                                                          | 40.2%    | 59.8%     | 100%            | 48%   |  |  |  |  |
| SWP 63                                                          | 40.2%    | 59.8%     | 100%            | 48%   |  |  |  |  |
| SWP 64                                                          | 40.2%    | 59.8%     | 100%            | 48%   |  |  |  |  |
| SWP 66                                                          | 40.2%    | 59.8%     | 100%            | 48%   |  |  |  |  |
| SWP 83                                                          | 57.4%    | 42.6%     | 100%            | 48%   |  |  |  |  |
| SWP 84                                                          | 57.4%    | 42.6%     | 100%            | 48%   |  |  |  |  |
| SWP 85                                                          | 57.4%    | 42.6%     | 100%            | 48%   |  |  |  |  |
| SWP 88                                                          | 57.4%    | 42.6%     | 100%            | 48%   |  |  |  |  |

| TALBE 10.1H: SUMMARY |            |                |  |  |  |  |  |  |
|----------------------|------------|----------------|--|--|--|--|--|--|
|                      | LRFD       | ASD            |  |  |  |  |  |  |
|                      | $\phi T_n$ | $T_n / \Omega$ |  |  |  |  |  |  |
| Model                | (lb)       | (lb)           |  |  |  |  |  |  |
| SWP 46               | 6,515      | 4,835          |  |  |  |  |  |  |
| SWP 63               | 6,515      | 4,835          |  |  |  |  |  |  |
| SWP 64               | 6,515      | 4,835          |  |  |  |  |  |  |
| SWP 66               | 6,515      | 4,835          |  |  |  |  |  |  |
| SWP 83               | 11,450     | 8,490          |  |  |  |  |  |  |
| SWP 84               | 11,450     | 8,490          |  |  |  |  |  |  |
| SWP 85               | 11,450     | 8,210          |  |  |  |  |  |  |
| SWP 88               | 11,450     | 8,010          |  |  |  |  |  |  |

NOTE: uplift values for SWP 46, 63, 64 and 66 models have been reduced per latest test (values are limited by 1/8" displacement criterion)

#### 10.2 STURDI-WALL PLUS: UPLIFT (TENSION) STRENGTH\*

#### \*WITH PROPRIATARY SCREWS

The calculations are presented in both the LRFD and ASD formats according to provisions of the governing code (AISC 360-16 and NDS 2015). The calculations are completed in Microsoft Excel (2016) using the listed equations. The internal loads in the steel saddle bracket are determined using Visual Analysis (v.18) by IES, Inc.

The rebar in SWP83 model can achieve only 66% of full development. As a result, the design and allowable tensile strength for this model in Table 3A is reduced by a factor of 0.66.

The load on each fastener type (screw, bolt) is proportional to the ratio of the slip-modulus of the fastener type to the cumulative slip-modulus all fasteners:  $N_s k_s / k_g$ ,  $N_b k_b / k_g$ , where  $N_s$  is the quantity of screws per bracket,  $N_b$  is the quantity of bolts in double shear per bracket,  $k_s$  is the slip-modulus of one screw in single shear,  $k_b$  is the slip-modulus of one bolt in double shear, and  $k_g$  is the cumulative slip-modulus of all fasteners (see Tables 10E and 10G). The slip-modulus of the screw fasteners does not equal the slip modulus of the bolt fastener(s):  $N_s k_s \neq N_b k_b$ . As a result, one fastener type is loaded to the maximum allowable or design lateral strength, while the second fastener type receives the balance of the load which will not reach the fastener's maximum capacity (Table 10G). The discussion and calculations for slip-modulus are provided in Section 7.

Table 10A shows tensile strength of the SWP brackets based on tensile strength of rebar, weld strength, and tensile strength of vertical plates. Table 10B shows the tensile strength of the SWP brackets based on the bending strength of the steel saddle (controls the design). Table 10F shows the tensile strength of the SWP steel brackets based on the lateral (shear) strength of the steel-to-wood connection.

#### **GOVERNING CODE:**

Specification for Structural Steel Buildings ANSI/AISC 360-16 National Design Specification for Wood Construction, NDS (2015)

#### **GOVERNING EQUATIONS:**

#### • REBAR AND STEEL SADDLE: AISC 360, SECTION D2

| Ī | Design Tonsile Strongth    | $\Phi P_n = \Phi F_y A_g$         | (tensile yielding) | ф = 0.90        | (D2-1) |
|---|----------------------------|-----------------------------------|--------------------|-----------------|--------|
|   | Design Tensile Strength    | $\Phi P_n = \Phi F_u A_e$         | (tensile rupture)  | ф = 0.75        | (D2-2) |
| ı | Allowelle Towelle Otmoreth | $P_n / \Omega = F_y A_g / \Omega$ | (tensile yielding) | Ω = 1.67        | (D2-1) |
|   | Allowable Tensile Strength | $P_n / \Omega = F_u A_e / \Omega$ | (tensile rupture)  | $\Omega = 2.00$ | (D2-2) |

#### • WELDS: AISC 360, SECTION J2

| Design Strength    | $\Phi R_n = \Phi F_w A_w$         | ф = 0.75        | (J2-3)    |
|--------------------|-----------------------------------|-----------------|-----------|
| Allowable Strength | $R_n / \Omega = F_w A_w / \Omega$ | $\Omega = 2.00$ | (J2-3)    |
|                    | $F_w = 0.60 F_{EXX}$              |                 | (T. J2.5) |

#### • BENDING IN STEEL SADDLE: AISC 360, SECTIONS F1 & F11

| Design Bending Strength    | $\phi M_n = \phi F_y Z$         | ф = 0.90 | (F1, F11) |
|----------------------------|---------------------------------|----------|-----------|
| Allowable Bending Strength | $M_n / \Omega = M_n Z / \Omega$ | Ω = 1.67 | (F1, F11) |

#### • STEEL-TO-WOOD CONNECTION (BOLT, SCREWS): NDS 2015

Subscript "b" = bolts

| Allowable Lateral Strength of Screws  | $Z'_s$ , $ASD N_s = N_s Z C_D C_\Delta$                 | NDS Table 11.3.1 |
|---------------------------------------|---------------------------------------------------------|------------------|
| Design Lateral Strength of Screws     | $Z'_{s, LRFD} N_s = \phi N_s Z \lambda C_{\Delta} K_F$  | NDS Table 11.3.1 |
| Allowable Lateral Strength of Bolt(s) | $Z'_{b, ASD} N_b = N_b Z C_D C_\Delta$                  | NDS Table 11.3.1 |
| Design Lateral Strength of Bolt(s)    | $Z'_{b, LRFD} N_b = \varphi N_b Z \lambda C_\Delta K_F$ | NDS Table 11.3.1 |

Z = Unadjusted reference lateral (shear) design value for one fastener NDS Table 12.3.1A Z' = Adjusted lateral design value for one fastener NDS Table 11.3.1  $C_D$  = ASD load duration factor NDS Table 2.3.2  $C_{\Delta}$  = Geometry factor NDS 12.5.1 N = total quantity of fasteners in the group  $\phi$  = LRFD resistance factor NDS Table N2  $\lambda$  = LRFD time effect factor NDS Table N3 K<sub>F</sub> = ASD to LRFD format conversion factor NDS Table N1 Subscript "s" = screws

Allowable Lateral Strength of Mixed Fasteners  $V_a = min [Z'_{s, ASD} (k_g/k_s), Z'_{b, ASD} (k_g/k_b)]$ Design Lateral Strength of Mixed Fasteners  $\phi V = min [Z'_{s, LRFD} (k_g/k_s), Z'_{b, LRFD} (k_g/k_s)]$ 

#### **CALCULATIONS:**

| REBAR PROPER                             | TIES       | WELD PROPERTIES                                    |         |
|------------------------------------------|------------|----------------------------------------------------|---------|
| Rebar Yield Strength, F <sub>y</sub>     | 60 ksi     | Effective Weld Thickness (throat) , t <sub>e</sub> | 0.25 in |
| ·                                        |            | Electrode Classification Number                    | 70 ksi  |
| STEEL SADDLE BRACKET                     | PROPERTIES | Nominal Strength of Weld Metal, F <sub>w</sub>     | 42 ksi  |
| Minimum Tensile Strength, F <sub>u</sub> | 55 ksi     |                                                    |         |
| Minimum Yield Strength, Fy               | 40 ksi     |                                                    |         |
| Thickness of steel, t                    | 0.250 in   |                                                    |         |

# TABLE 10.2A: DESIGN TENSILE STRENGTH AND ALLOWABLE TENSILE STRENGTH (REBAR, WELDS, AND VERTICAL STEEL PLATES)

|          |       | Tensile    | Strength o     | f Rebar an | d Welds    |                | Tensile Strength of Steel Saddle Vertical Plates |            |                |         |                 |                |
|----------|-------|------------|----------------|------------|------------|----------------|--------------------------------------------------|------------|----------------|---------|-----------------|----------------|
|          | Rebar | Tensile St | rength         | W          | eld Streng | jth            |                                                  | Yielding   |                |         | Rupture         |                |
|          |       | LRFD       | ASD            |            | LRFD       | ASD            |                                                  | LRFD       | ASD            |         | LRFD            | ASD            |
|          | $A_s$ | $\phi R_n$ | $R_n / \Omega$ | $A_{w}$    | $\phi R_n$ | $R_n / \Omega$ | $\mathbf{A}_{g}$                                 | $\phi R_n$ | $R_n / \Omega$ | $A_{e}$ | φR <sub>n</sub> | $R_n / \Omega$ |
| Model ID | (in²) | (lb)       | (lb)           | (in²)      | (lb)       | (lb)           | (in²)                                            | (lb)       | (lb)           | (in²)   | (lb)            | (lb)           |
| SWP 46   | 0.80  | 43200      | 28740          | 1.57       | 49460      | 32970          | 2.5                                              | 90000      | 59880          | 2.19    | 90338           | 60225          |
| SWP 63   | 0.80  | 43200      | 28740          | 1.57       | 49460      | 32970          | 2.5                                              | 90000      | 59880          | 2.19    | 90338           | 60225          |
| SWP 64   | 0.80  | 43200      | 28740          | 1.57       | 49460      | 32970          | 2.5                                              | 90000      | 59880          | 2.19    | 90338           | 60225          |
| SWP 66   | 0.80  | 43200      | 28740          | 1.57       | 49460      | 32970          | 2.5                                              | 90000      | 59880          | 2.19    | 90338           | 60225          |
| SWP 83   | 1.24  | 44194      | 44550          | 1.96       | 61740      | 41160          | 3.5                                              | 126000     | 83832          | 3.19    | 131588          | 87725          |
| SWP 84   | 1.24  | 66960      | 44550          | 1.96       | 61740      | 41160          | 3.5                                              | 126000     | 83832          | 3.19    | 131588          | 87725          |
| SWP 85   | 1.24  | 66960      | 44550          | 1.96       | 61740      | 41160          | 3.5                                              | 126000     | 83832          | 3.19    | 131588          | 87725          |
| SWP 88   | 1.24  | 66960      | 44550          | 1.96       | 61740      | 41160          | 3.5                                              | 126000     | 83832          | 3.19    | 131588          | 87725          |

| ABLE 10.2B: DESIGN TENSILE STRENGTH AND ALLOWABLE TENSILE STRENGTH AS DEFINED BY THE BENDING STRENGTH OF THE STEEL SADDLE |       |      |                |                    |                 |              |         |                 |                |
|---------------------------------------------------------------------------------------------------------------------------|-------|------|----------------|--------------------|-----------------|--------------|---------|-----------------|----------------|
|                                                                                                                           |       |      | _              | _                  |                 |              | _       | LRFD            | ASD            |
|                                                                                                                           | t     | w    | F <sub>y</sub> | Z                  | фM <sub>n</sub> | $M_n/\Omega$ | k       | φT <sub>n</sub> | $T_n / \Omega$ |
| Model ID                                                                                                                  | (in)  | (in) | (ksi)          | (in <sup>3</sup> ) | (in-lb)         | (in-lb)      | (lb-in) | (lb)            | (lb)           |
| SWP 46                                                                                                                    | 0.250 | 5.00 | 40             | 0.078              | 2813            | 1871         | 0.2725  | 10320           | 6870           |
| SWP 63                                                                                                                    | 0.250 | 5.00 | 40             | 0.078              | 2813            | 1871         | 0.2725  | 10320           | 6870           |
| SWP 64                                                                                                                    | 0.250 | 5.00 | 40             | 0.078              | 2813            | 1871         | 0.3102  | 9070            | 6030           |
| SWP 66                                                                                                                    | 0.250 | 5.00 | 40             | 0.078              | 2813            | 1871         | 0.3005  | 9360            | 6230           |
| SWP 83                                                                                                                    | 0.250 | 7.00 | 40             | 0.109              | 3938            | 2620         | 0.2507  | 15710           | 10450          |
| SWP 84                                                                                                                    | 0.250 | 7.00 | 40             | 0.109              | 3938            | 2620         | 0.2898  | 13590           | 9040           |
| SWP 85                                                                                                                    | 0.250 | 7.00 | 40             | 0.109              | 3938            | 2620         | 0.3191  | 12340           | 8210           |
| SWP 88                                                                                                                    | 0.250 | 7 00 | 40             | 0.109              | 3938            | 2620         | 0.3271  | 12040           | 8010           |

- (1) t = thickness of steel plate (saddle)
- (2) w = width of steel plate (saddle)
- (3) Z is plastic section modulus =  $w t^2 / 4$
- (3) Factor "k" represents the maximum moment found anywhere in the steel saddle under 1 pound of tension force. This factor was determined using a two dimensional computer model for each SWP model and equals Moment divided by total applied downward force, k = M/F.
- (4) Tension strength, as defined by the bending strength of the steel saddle bracket, is determined using the following expressions:  $\Phi T_n = \Phi M_n/k$ ,  $T_n / \Omega = (M_n/k) / \Omega$

TABLE 10.2C: ADJUSTED LATERAL DESIGN VALUE OF ONE SCREW: NDS Table 12.3.1A

|                                                    |                                  |       | F yb                                 | 199000     | 1+R <sub>e</sub>      | 1.1        | θ                | 0         |      |
|----------------------------------------------------|----------------------------------|-------|--------------------------------------|------------|-----------------------|------------|------------------|-----------|------|
| Screw Diameter (in)                                | D                                | 0.243 | F <sub>em, par</sub>                 | 5526       | $2+R_e$               | 2.1        | I <sub>m</sub>   | 1260.2    |      |
| Screw Length (in)                                  | L                                | 3     | F <sub>em, perp</sub>                | 5526       | k <sub>1</sub>        | 0.408      | Is               | 1281.3    |      |
| Thickness of Steel Plate Member (in)               | $I_s$                            | 0.25  | $F_{\it em}$                         | 5526       | k <sub>2</sub>        | 0.549      | II               | 522.7     |      |
| Thickness of Wood Member (in)                      | $I_{m}$                          | 4.5   | $R_{e}$                              | 0.089      | <b>k</b> 3            | 7.471      | III <sub>m</sub> | 587.1     |      |
| Screw Penetration into main member (in)            | р                                | 2.75  | $R_t$                                | 11.000     | $F_{ m es,\ par}$     | 61800      | III s            | 409.7     |      |
| Minimum Allowed Penetration, p <sub>min</sub> = 6D | $p_{min}$                        | 1.5   | Ko                                   | 2.930      | F <sub>es, perp</sub> |            | IV               | 522.8     |      |
| Specific Gravity of Wood Member                    | G                                | 0.55  | р                                    | 2.8        | F <sub>es</sub>       | 61800      | $D_r$            | 0.243     |      |
| Lateral Design Value (lbs)                         | Z                                | 410   |                                      | LRFD resis | stance facto          | or         |                  | ф         | 0.65 |
| ASD Load Duration Factor                           | $C_D$                            | 1.6   |                                      | LRFD time  | effect facto          | or         |                  | λ         | 1    |
| Geometry Factor                                    | $C_{\scriptscriptstyle{\Delta}}$ | 1     | ASD to LRFD format conversion factor |            |                       | $K_{F}$    | 3.32             |           |      |
| ASD Adjusted Lateral Design Value (lbs)            | Z's, ASD                         | 655   |                                      | LRFD Adju  | isted Latera          | l Design \ | /alue (lbs)      | Z's, LRFD | 884  |

TABLE 10.2D: ADJUSTED LATERAL DESIGN VALUE OF ONE BOLT (DOUBLE SHEAR): NDS Table 12.3.1A

| Bolt Diameter (in)                      | D                                | 0.5    | $F_{em,\;par}$        | 6160       | $K_{\theta}$     | 1.000             | $I_{m}$ | 3465                  |      |
|-----------------------------------------|----------------------------------|--------|-----------------------|------------|------------------|-------------------|---------|-----------------------|------|
| Main Member Thickness (in)              | $t_{\text{m, min}}$              | 4.5    | $F_{\text{em, perp}}$ | 3626       | 1+R <sub>e</sub> | 1.071             | $III_s$ | 2369                  |      |
| Side Member Thickness (in)              | $t_s$                            | 0.25   | $F_{em}$              | 6160       | $2+R_e$          | 2.071             | IV      | 3150                  |      |
| Dowel Bearing Strength (psi)            | $F_{es}$                         | 87000  | $R_{e}$               | 0.071      | $k_3$            | 10.192            |         |                       |      |
| Bolt Yield Strength (psi)               | $F_{yb}$                         | 106000 |                       |            |                  |                   |         |                       |      |
| Max Angle Load to Grain (deg)           | θ                                | 0      |                       |            |                  |                   |         |                       |      |
| Specific Gravity                        | G                                | 0.55   |                       |            |                  |                   |         |                       |      |
| Reference Lateral Design Value (Z)      | Ζ                                | 2369   | l                     | _RFD resis | tance facto      | r                 |         | ф                     | 0.65 |
| ASD Load Duration Factor                | $C_D$                            | 1.6    | l                     | RFD time   | effect facto     | or                |         | λ                     | 1    |
| Geometry Factor                         | $C_{\scriptscriptstyle{\Delta}}$ | 1      | 1                     | ASD to LRF | D format         | conversion factor |         | $K_F$                 | 3.32 |
| ASD Adjusted Lateral Design Value (lbs) | Z' <sub>b, ASD</sub>             | 3790   | l                     | -RFD Adjus | sted Latera      | l Design Value (I | bs)     | Z' <sub>b, LRFD</sub> | 5112 |

| TABL   | TABLE 10.2E: FASTENER SLIP-MODULUS |                                                             |   |   |         |  |  |  |  |  |
|--------|------------------------------------|-------------------------------------------------------------|---|---|---------|--|--|--|--|--|
|        | k <sub>s</sub>                     | k <sub>s</sub> k <sub>b</sub> N <sub>s</sub> N <sub>b</sub> |   |   |         |  |  |  |  |  |
| Model  | (lb/in)                            | (lb/in)                                                     |   |   | (lb/in) |  |  |  |  |  |
| SWP 46 | 32143                              | 95459                                                       | 4 | 2 | 319491  |  |  |  |  |  |
| SWP 63 | 32143                              | 95459                                                       | 4 | 2 | 319491  |  |  |  |  |  |
| SWP 64 | 32143                              | 95459                                                       | 4 | 2 | 319491  |  |  |  |  |  |
| SWP 66 | 32143                              | 95459                                                       | 4 | 2 | 319491  |  |  |  |  |  |
| SWP 83 | 32143                              | 95459                                                       | 8 | 2 | 448063  |  |  |  |  |  |
| SWP 84 | 32143                              | 95459                                                       | 8 | 2 | 448063  |  |  |  |  |  |
| SWP 85 | 32143                              | 95459                                                       | 8 | 2 | 448063  |  |  |  |  |  |
| SWP 88 | 32143                              | 95459                                                       | 8 | 2 | 448063  |  |  |  |  |  |

|        | TABLE 10.2F: TENSILE STRENGTH BASED ON STEEL-TO-WOOD SHEAR CONNECTION |                          |                         |                         |            |              |  |  |  |
|--------|-----------------------------------------------------------------------|--------------------------|-------------------------|-------------------------|------------|--------------|--|--|--|
|        |                                                                       |                          |                         |                         | LRFD       | ASD          |  |  |  |
|        | $Z'_{s, LRFD}$ ( $k_g/k_s$ )                                          | $Z'_{b, LRFD} (k_g/k_b)$ | $Z'_{s, ASD} (k_g/k_s)$ | $Z'_{b, ASD} (k_g/k_b)$ | $\phi V_n$ | $V_n/\Omega$ |  |  |  |
| Model  | (lb)                                                                  | (lb)                     | (lb)                    | (lb)                    | (lb)       | (lb)         |  |  |  |
| SWP 46 | 8787                                                                  | 17108                    | 6515                    | 12684                   | 8790       | 6520         |  |  |  |
| SWP 63 | 8787                                                                  | 17108                    | 6515                    | 12684                   | 8790       | 6520         |  |  |  |
| SWP 64 | 8787                                                                  | 17108                    | 6515                    | 12684                   | 8790       | 6520         |  |  |  |
| SWP 66 | 8787                                                                  | 17108                    | 6515                    | 12684                   | 8790       | 6520         |  |  |  |
| SWP 83 | 12324                                                                 | 23993                    | 9137                    | 17789                   | 12320      | 9140         |  |  |  |
| SWP 84 | 12324                                                                 | 23993                    | 9137                    | 17789                   | 12320      | 9140         |  |  |  |
| SWP 85 | 12324                                                                 | 23993                    | 9137                    | 17789                   | 12320      | 9140         |  |  |  |
| SWP 88 | 12324                                                                 | 23993                    | 9137                    | 17789                   | 12320      | 9140         |  |  |  |

| TABLE 10.2G: LOAD DISTRIBUTION RATIO AND LOAD-TO-STRENGTH RATIO |          |           |                 |       |  |  |
|-----------------------------------------------------------------|----------|-----------|-----------------|-------|--|--|
|                                                                 | Load Dis | tribution | Load / Strength |       |  |  |
| Model                                                           | Screws   | Bolts     | Screws          | Bolts |  |  |
| SWP 46                                                          | 40.2%    | 59.8%     | 100%            | 51%   |  |  |
| SWP 63                                                          | 40.2%    | 59.8%     | 100%            | 51%   |  |  |
| SWP 64                                                          | 40.2%    | 59.8%     | 100%            | 51%   |  |  |
| SWP 66                                                          | 40.2%    | 59.8%     | 100%            | 51%   |  |  |
| SWP 83                                                          | 57.4%    | 42.6%     | 100%            | 51%   |  |  |
| SWP 84                                                          | 57.4%    | 42.6%     | 100%            | 51%   |  |  |
| SWP 85                                                          | 57.4%    | 42.6%     | 100%            | 51%   |  |  |
| SWP 88                                                          | 57.4%    | 42.6%     | 100%            | 51%   |  |  |

| TALBE 10.2H: SUMMARY |                 |                |  |  |  |  |  |
|----------------------|-----------------|----------------|--|--|--|--|--|
|                      | LRFD            | ASD            |  |  |  |  |  |
|                      | φT <sub>n</sub> | $T_n / \Omega$ |  |  |  |  |  |
| Model                | (lb)            | (lb)           |  |  |  |  |  |
| SWP 46               | 6,515           | 4,835          |  |  |  |  |  |
| SWP 63               | 6,515           | 4,835          |  |  |  |  |  |
| SWP 64               | 6,515           | 4,835          |  |  |  |  |  |
| SWP 66               | 6,515           | 4,835          |  |  |  |  |  |
| SWP 83               | 12,320          | 9,140          |  |  |  |  |  |
| SWP 84               | 12,320          | 9,040          |  |  |  |  |  |
| SWP 85               | 12,320          | 8,210          |  |  |  |  |  |
| SWP 88               | 12,040          | 8,010          |  |  |  |  |  |

NOTE: uplift values for SWP 46, 63, 64 and 66 models have been reduced per latest test (values are limited by 1/8" displacement criterion)

### 11. STURDI-WALL PLUS: SHEAR STRENGTH OF BRACKET-TO-CONCRETE CONNECTION

The calculations are presented in both the LRFD and ASD formats in accordance with the provisions of the governing codes (AISC 360-16 and ACI 318-14). The calculations include (1) shear strength of rebar and (2) concrete prying or breakout forces. The shear strength of rebar is covered in both ACI 318 and AISC 360 standards. It is desirable to present the results in terms of ASD and LRFD design, therefore, AISC 360, which includes both methods, is used for steel anchor design calculations. The breakout calculations are completed using the LRFD method per ACI 318 and are converted to the ASD levels using the conversion factor,  $\alpha = 1.6$ . The calculations are completed in Microsoft Excel (2016) using the listed equations.

#### **GOVERNING CODE:**

Specification for Structural Steel Buildings ANSI/AISC 360-16
Building Code Requirements for Structural Concrete ACI 318-14

#### **GOVERNING EQUATIONS:**

#### • WELDS: AISC 360, SECTION J2

| Design Strength    | $φR_n = φF_wA_w$                  | ф = 0.75        | (J2-3)    |
|--------------------|-----------------------------------|-----------------|-----------|
| Allowable Strength | $R_n / \Omega = F_w A_w / \Omega$ | $\Omega = 2.00$ | (J2-3)    |
|                    | $F_w = 0.60F_{EXX}$               |                 | (T. J2.5) |

#### • REBAR: AISC 360, SECTION J3

| Design Strength    | $φR_nN_r = φN_r F_{nν}A_s$                   | ф = 0.75        | (J3-1) |
|--------------------|----------------------------------------------|-----------------|--------|
| Allowable Strength | $R_n N_r / \Omega = N_r F_{nv} A_s / \Omega$ | $\Omega = 2.00$ | (J3-1) |

 $N_r$  = number of rebar

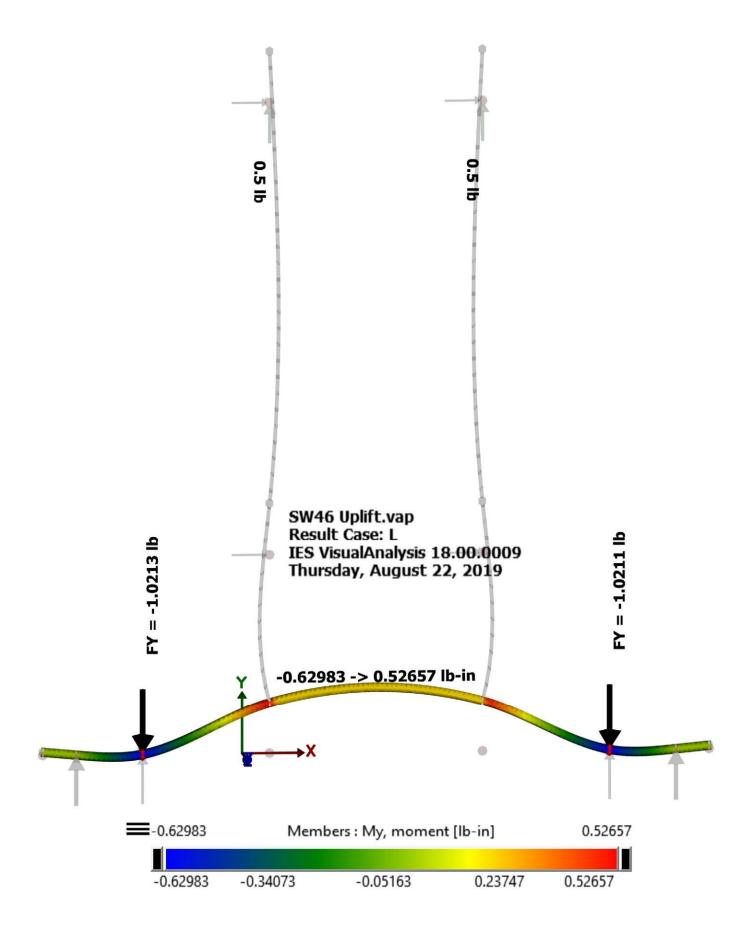
#### • ANCHORS (CONCRETE BREAKOUT): ACI 318, 17.5.2.1

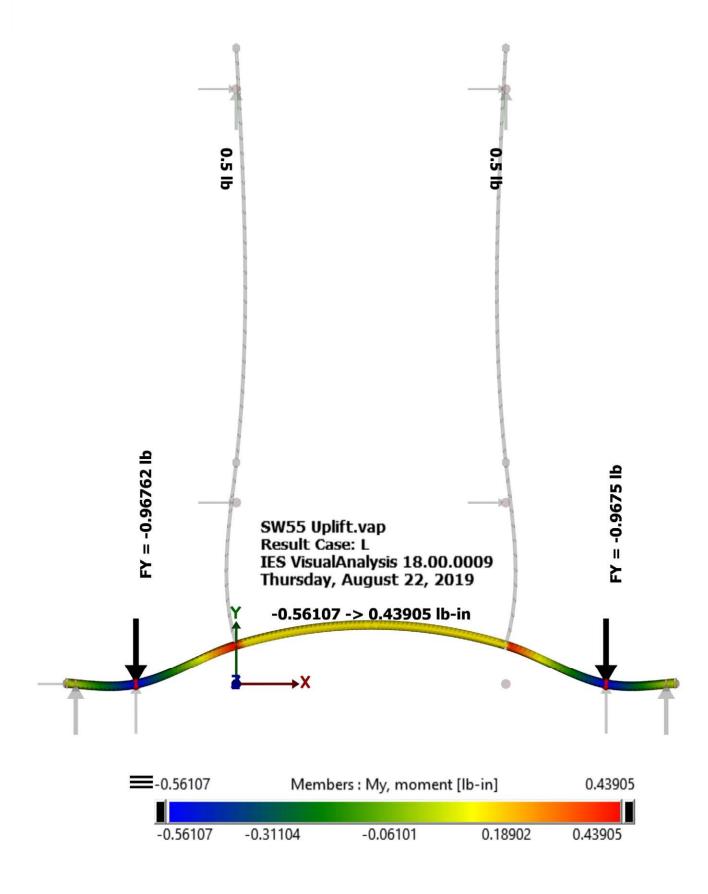
| Design Strength    | $\varphi V_{cbg} = \varphi (A_{Vc} / A_{Vco}) \Psi_{ec,V} \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_b$ | ф = 0.70       | (17.5.2.1b) |
|--------------------|--------------------------------------------------------------------------------------------------|----------------|-------------|
| Allowable Strength | $V_{cba}/\Omega = \phi V_{cba}/\alpha$                                                           | $\alpha = 1.6$ |             |

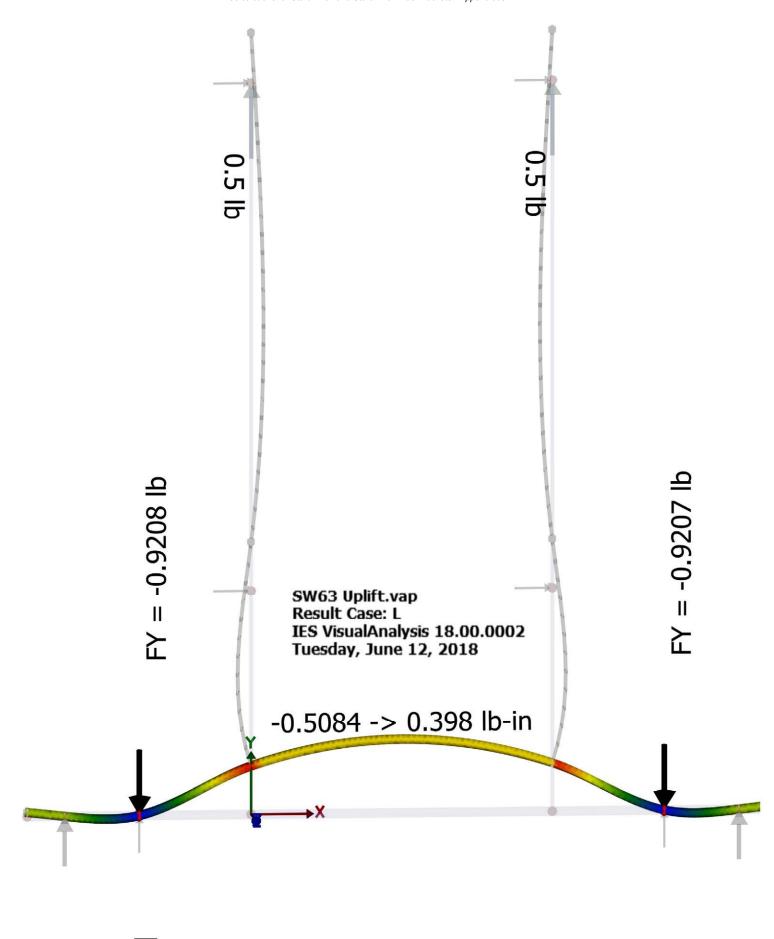
#### **CALCULATIONS:**

| REBAR PROP                            | ERTIES       | CONCRETE PROPER                        | JPERTIES     |  |  |
|---------------------------------------|--------------|----------------------------------------|--------------|--|--|
| Nominal Shear Stress, F <sub>nv</sub> | 32 ksi       | Compressive Strength, f'c              | 3 ksi        |  |  |
|                                       | (or greater) |                                        | (or greater) |  |  |
|                                       |              | WELD PROPERTIE                         | ES           |  |  |
|                                       |              | Effective Weld Thickness (throat) , te | 0.25 in      |  |  |
|                                       |              | Electrode Classification Number        | 70 ksi       |  |  |
|                                       |              | Nominal Strength of Weld Metal, Fw     | 42 ksi       |  |  |

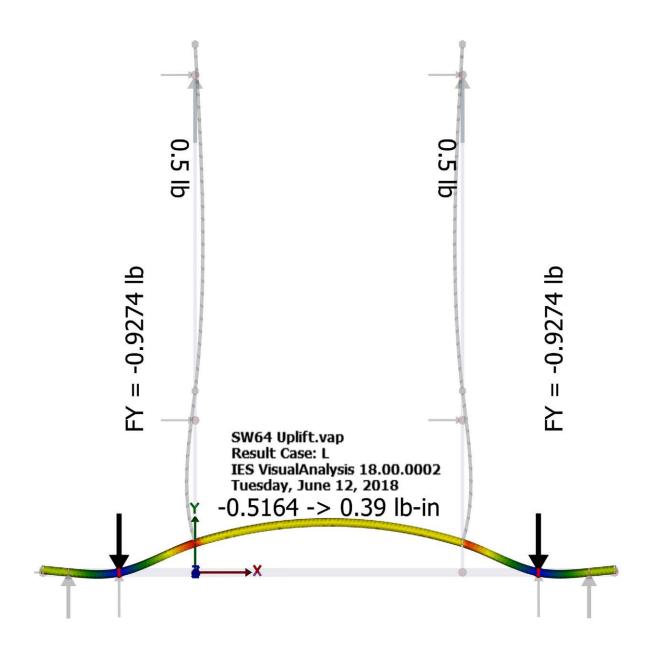
| TABLE 11A: DESIGN SHEAR STRENGTH AND ALLOWABLE SHEAR STRENGTH (REBAR AND WELDS) |       |       |                     |                |               |            |                |  |  |
|---------------------------------------------------------------------------------|-------|-------|---------------------|----------------|---------------|------------|----------------|--|--|
|                                                                                 |       |       | Rebar Shear Strengt | h              | Weld Strength |            |                |  |  |
|                                                                                 |       |       | LRFD                | ASD            |               | LRFD       | ASD            |  |  |
|                                                                                 | $N_r$ | $A_s$ | $\phi R_n$          | $R_n / \Omega$ | $A_{w}$       | $\phi R_n$ | $R_n / \Omega$ |  |  |
| Model ID                                                                        |       | (in²) | (lb)                | (lb)           | (in²)         | (lb)       | (lb)           |  |  |
| SWP 46                                                                          | 4.00  | 0.20  | 19200               | 15329          | 1.57          | 49455      | 32970          |  |  |
| SWP 63                                                                          | 4.00  | 0.20  | 19200               | 15329          | 1.57          | 49455      | 32970          |  |  |
| SWP 64                                                                          | 4.00  | 0.20  | 19200               | 15329          | 1.57          | 49455      | 32970          |  |  |
| SWP 66                                                                          | 4.00  | 0.20  | 19200               | 15329          | 1.57          | 49455      | 32970          |  |  |
| SWP 83                                                                          | 4.00  | 0.31  | 29760               | 23760          | 1.96          | 61740      | 41160          |  |  |
| SWP 84                                                                          | 4.00  | 0.31  | 29760               | 23760          | 1.96          | 61740      | 41160          |  |  |
| SWP 85                                                                          | 4.00  | 0.31  | 29760               | 23760          | 1.96          | 61740      | 41160          |  |  |
| SWP 88                                                                          | 4.00  | 0.31  | 29760               | 23760          | 1.96          | 61740      | 41160          |  |  |


| T        | TABLE 11B: SHEAR STRENGTH BASED ON CONCRETE BREAKOUT STRENGTH |            |                          |                           |     |                         |                |                                   |                                    |
|----------|---------------------------------------------------------------|------------|--------------------------|---------------------------|-----|-------------------------|----------------|-----------------------------------|------------------------------------|
| Model ID | C <sub>a1,2</sub><br>(in)                                     | S₁<br>(in) | A <sub>Vc</sub><br>(in²) | A <sub>vco</sub><br>(in²) | Ψ   | h <sub>ef</sub><br>(in) | V <sub>b</sub> | LRFD<br>φV <sub>cbg</sub><br>(lb) | ASD<br>V <sub>cbg</sub> /Ω<br>(lb) |
| SWP 46   | 4.75                                                          | 2.250      | 117.6                    | 101.5                     | 1.0 | 18.0                    | 5103           | 4140                              | 2590                               |
| SWP 63   | 4.75                                                          | 2.250      | 117.6                    | 101.5                     | 1.0 | 18.0                    | 5103           | 4140                              | 2590                               |
| SWP 64   | 4.75                                                          | 3.750      | 128.3                    | 101.5                     | 1.0 | 18.0                    | 5103           | 4510                              | 2820                               |
| SWP 66   | 4.75                                                          | 3.250      | 124.7                    | 101.5                     | 1.0 | 18.0                    | 5103           | 4390                              | 2740                               |
| SWP 83   | 6.38                                                          | 2.250      | 204.4                    | 182.9                     | 1.0 | 18.0                    | 7935           | 6210                              | 3880                               |
| SWP 84   | 6.38                                                          | 3.750      | 218.7                    | 182.9                     | 1.0 | 18.0                    | 7935           | 6640                              | 4150                               |
| SWP 85   | 6.38                                                          | 5.250      | 233.1                    | 182.9                     | 1.0 | 18.0                    | 7935           | 7080                              | 4430                               |
| SWP 88   | 6.38                                                          | 5.250      | 233.1                    | 182.9                     | 1.0 | 18.0                    | 7935           | 7080                              | 4430                               |


- (1)  $c_{a1}$  = distance from center of anchor to edge of concrete
- (2)  $S_1$  = spacing between rebar
- (3)  $\Psi_{ec,V}\Psi_{ed,V}\Psi_{c,V}\Psi_{h,V}$  = 1.0, higher values possible if concrete is properly reinforced around the anchors
- (4) h<sub>ef</sub> is effective rebar embedment into concrete
- (5) Calculations are based on 2" concrete cover to nearest rebar in the direction of the loa
- (6)  $c_{a1,2},\,S_1,\,A_{Vc},\,A_{Vco},\,\Psi,\,V_b$  and  $V_{cbg}$  as defined in ACI 318

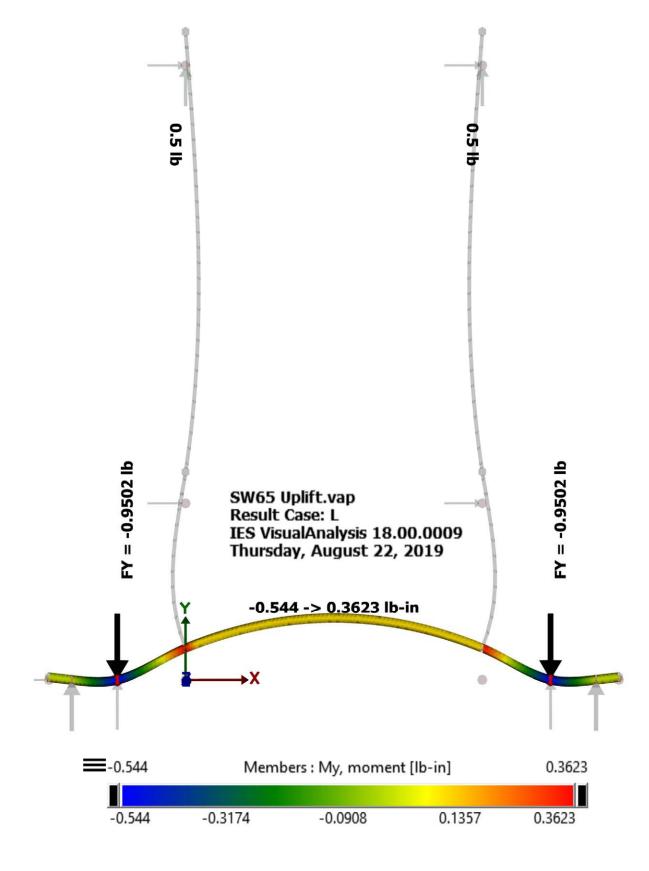

# **APPENDIX A**

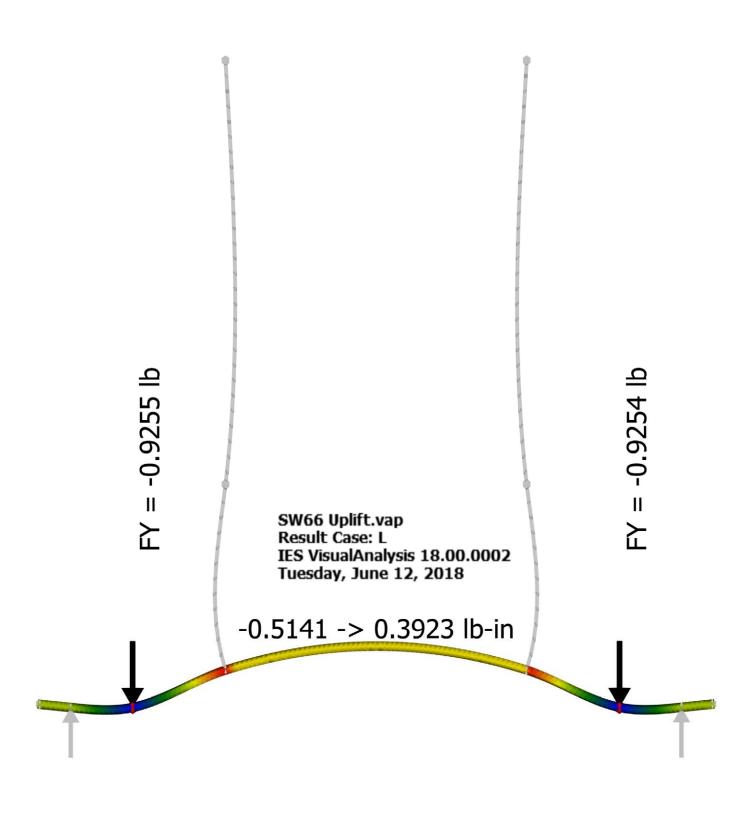
# Structural Models of Sturdi-Wall Brackets To Determine the Maximum Bending Moment (Unity) In Steel Bracket and to Determine Uplift Forces (Unity) on Anchors


Visual Analysis by IES, Inc Version 18



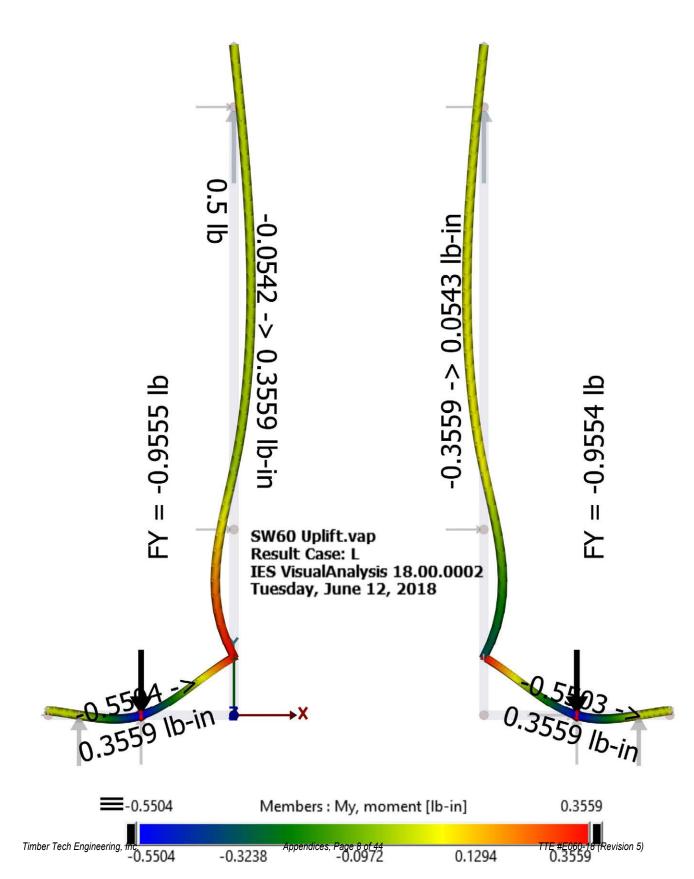


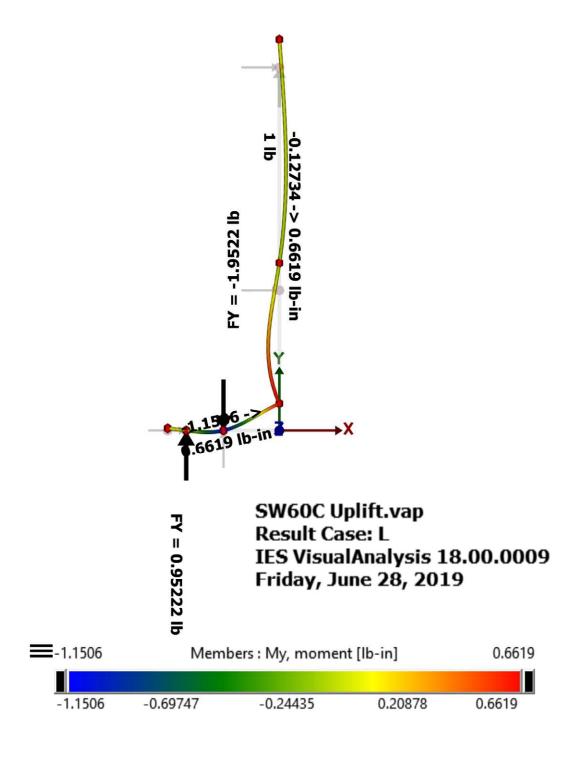


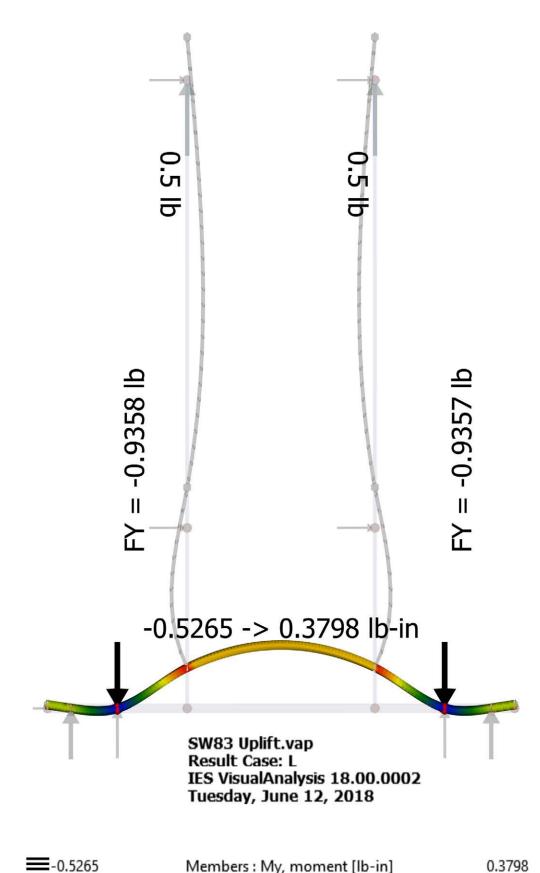







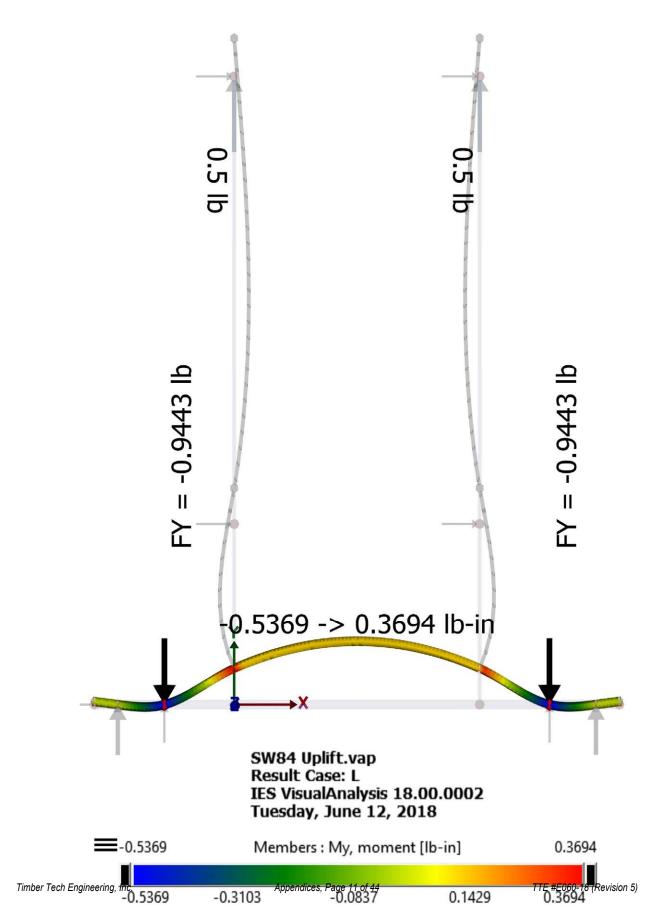


Timber Tech Engineering, Inc. Appendices, Page 5 of 44 TTE #E060-18 (Revision 5)

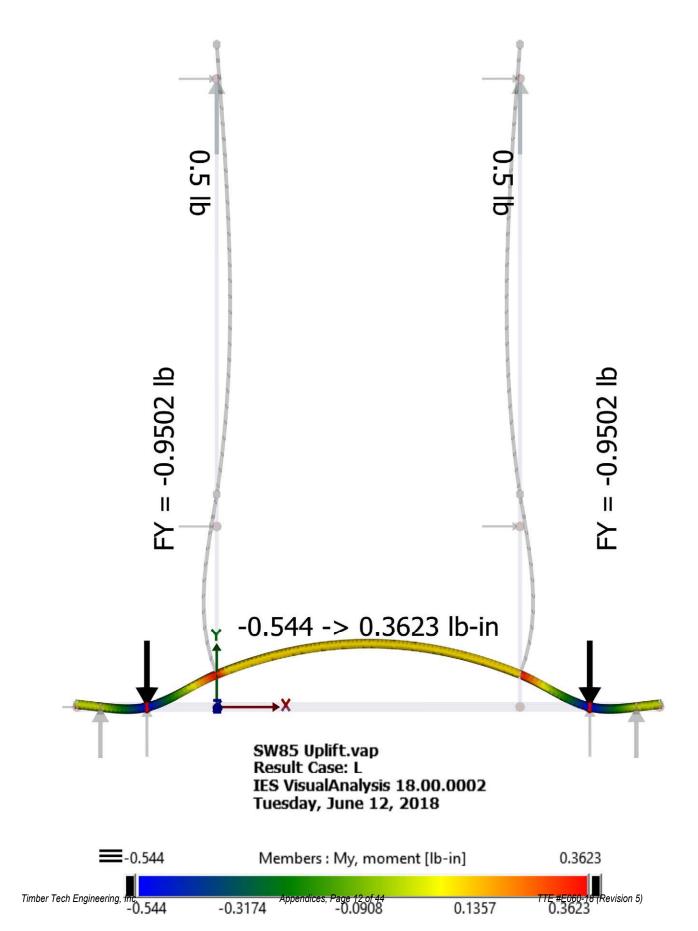


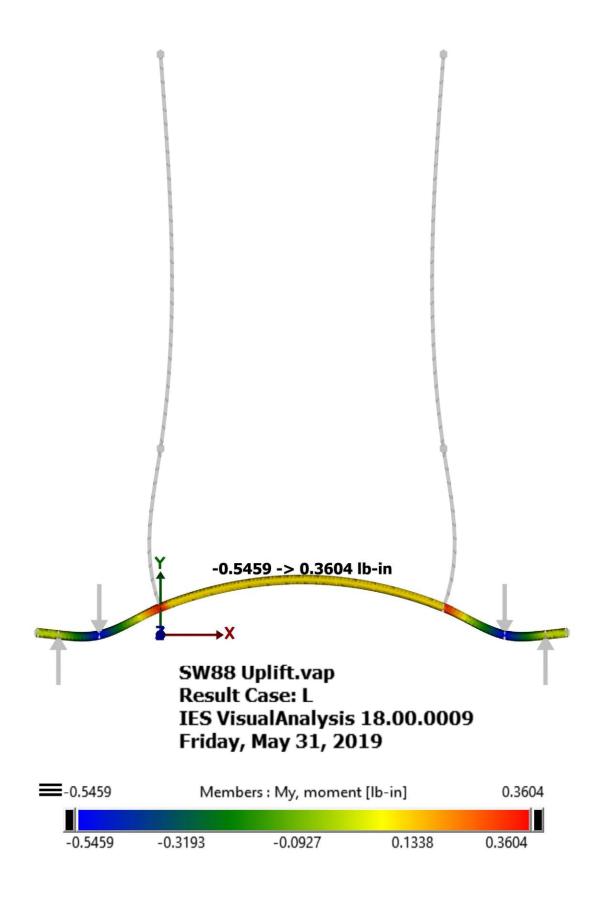



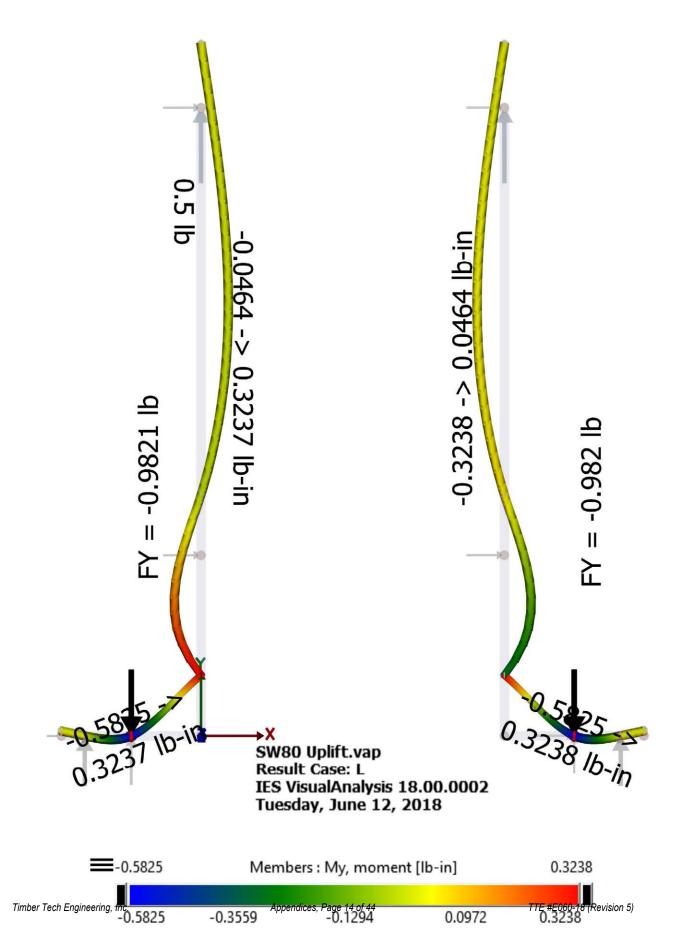

Timber Tech Engineering, Inc. -0.5141 Members: My, moment [lb-in] 0.3923

Appendices, Page 7 of 44
-0.5141 -0.2875 -0.0609 0.1657 0.3923



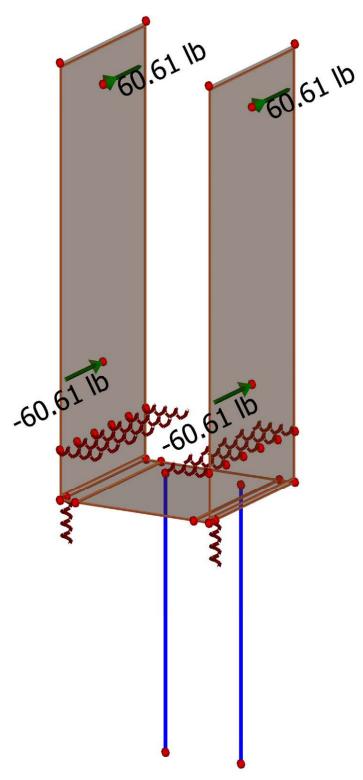





Timber Tech Engineering, Inc. -0.5265 Members : My, moment [lb-in] 0.3798

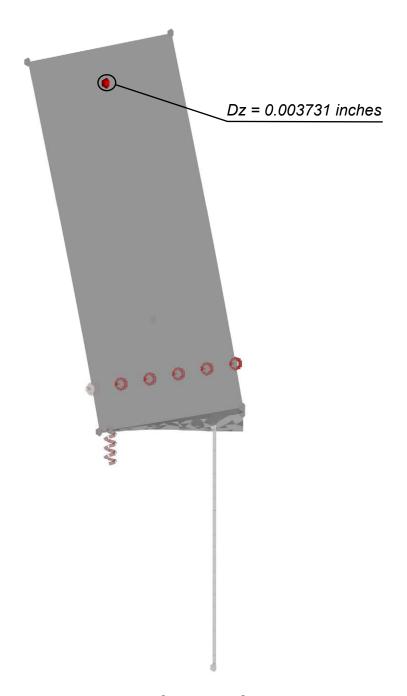
Timber Tech Engineering, Inc. -0.5265 -0.2999 Appendices, Page 10 of 44 0.1532 0.3798



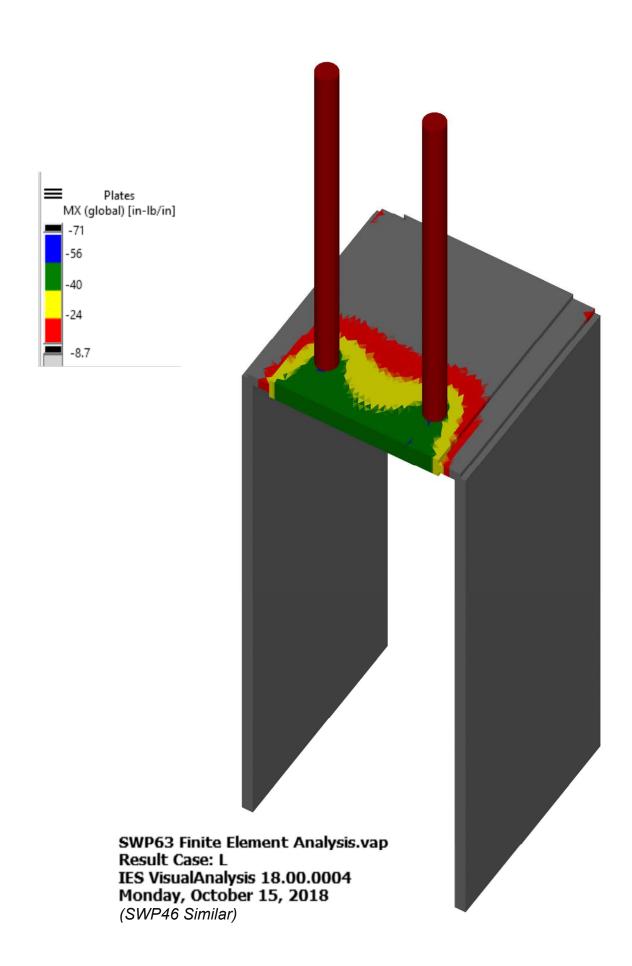


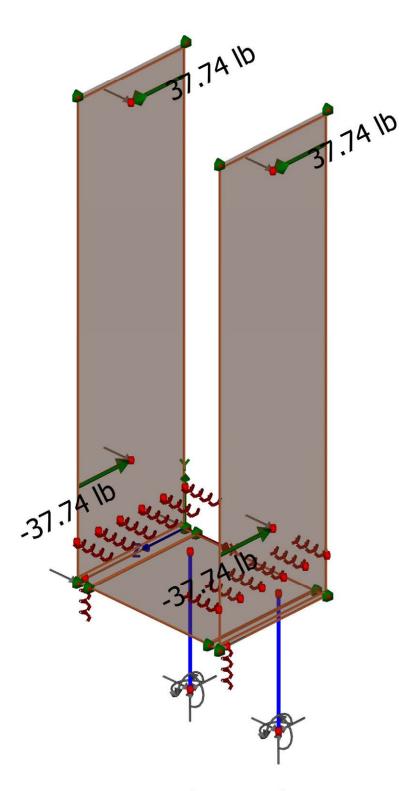






## APPENDIX B

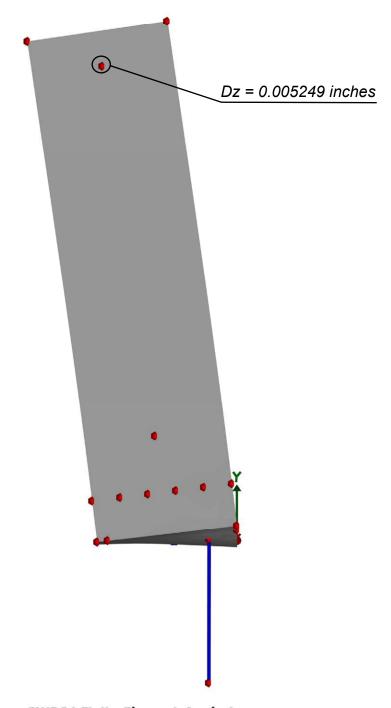
Structural Models of Sturdi-Wall Plus Brackets (Finite Element Analysis) To Determine Rotational Stiffness and the Maximum Bending Moment (Unity) In Steel Bracket


> Visual Analysis by IES, Inc Version 18

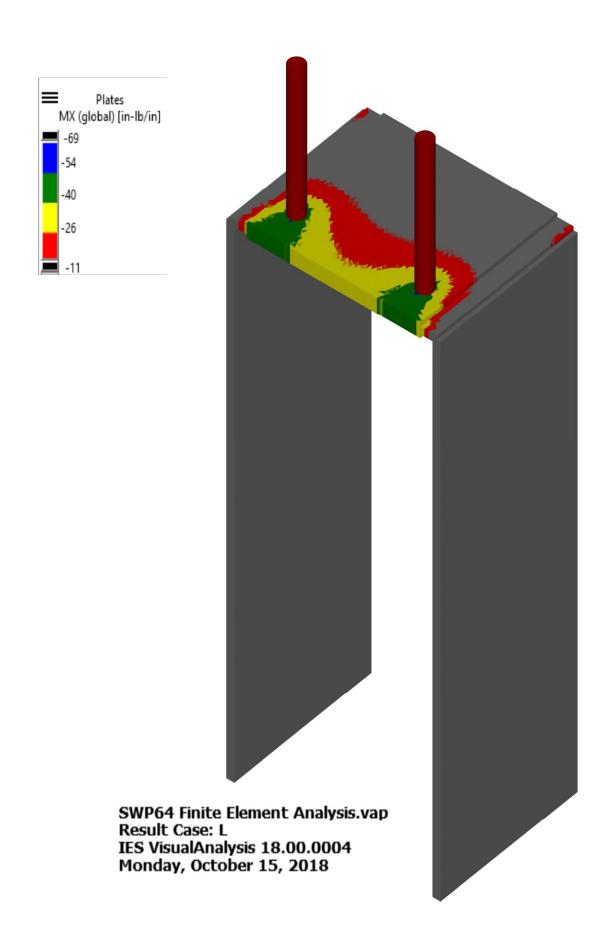


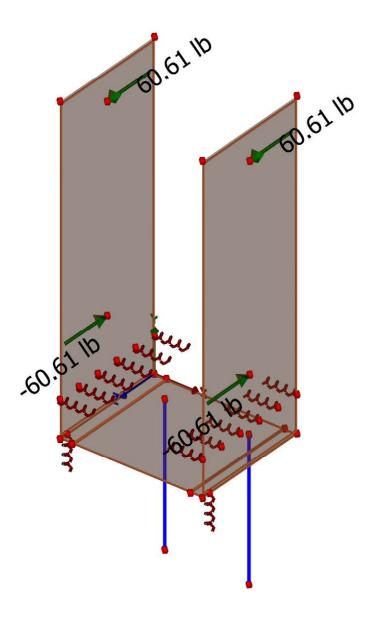

SWP63 Finite Element Analysis.vap Service Case: L IES VisualAnalysis 18.00.0002 Tuesday, June 12, 2018 (SWP46 Similar)



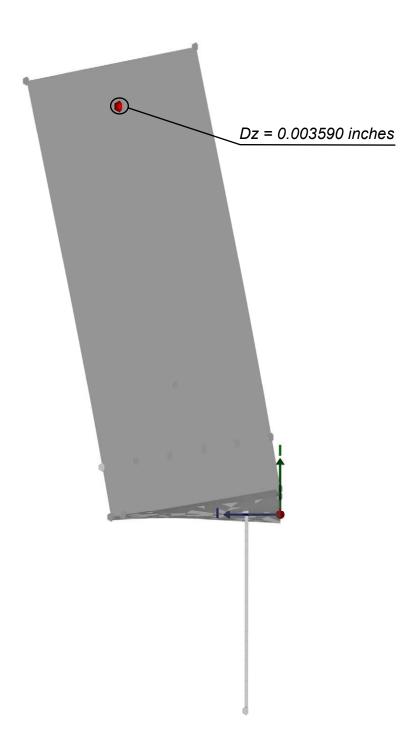

SWP63 Finite Element Analysis.vap Result Case: L IES VisualAnalysis 18.00.0002 Tuesday, June 12, 2018 (SWP46 Similar)



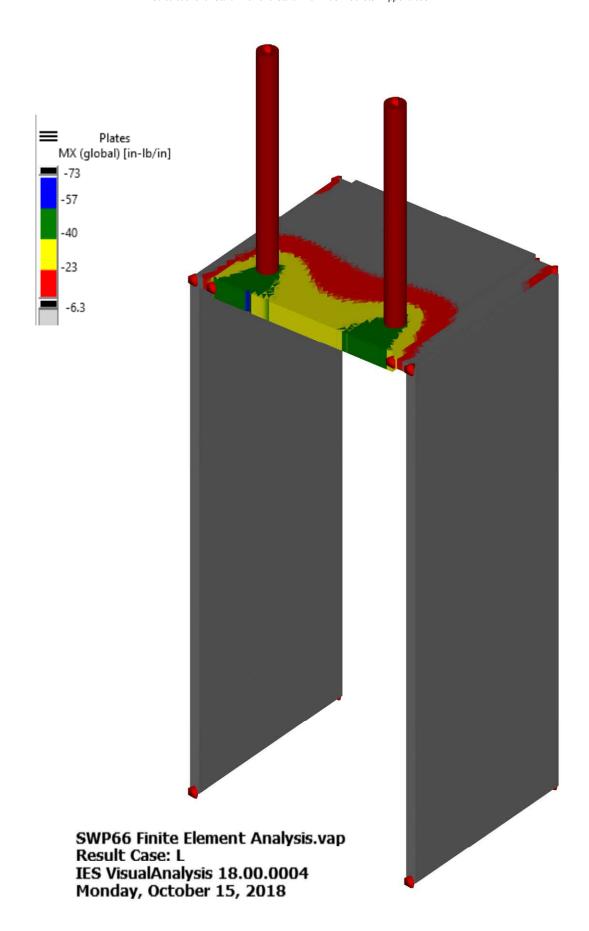


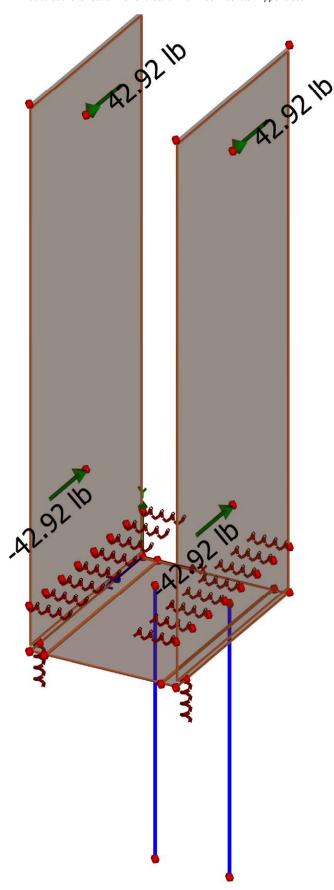


SWP64 Finite Element Analysis.vap Service Case: L IES VisualAnalysis 18.00.0002

Tuesday, June 12, 2018

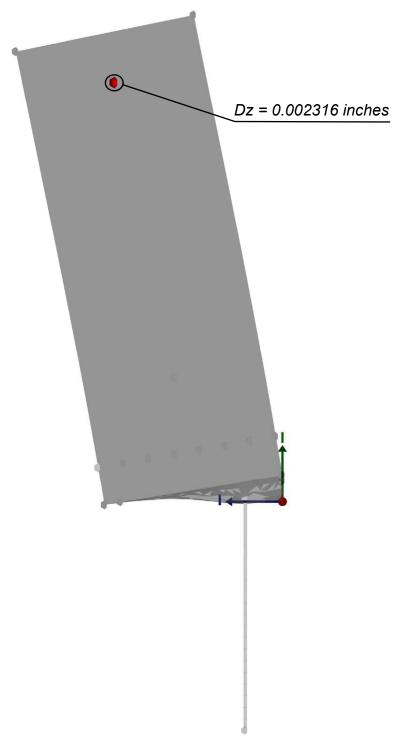



SWP64 Finite Element Analysis.vap Result Case: L IES VisualAnalysis 18.00.0002 Tuesday, June 12, 2018

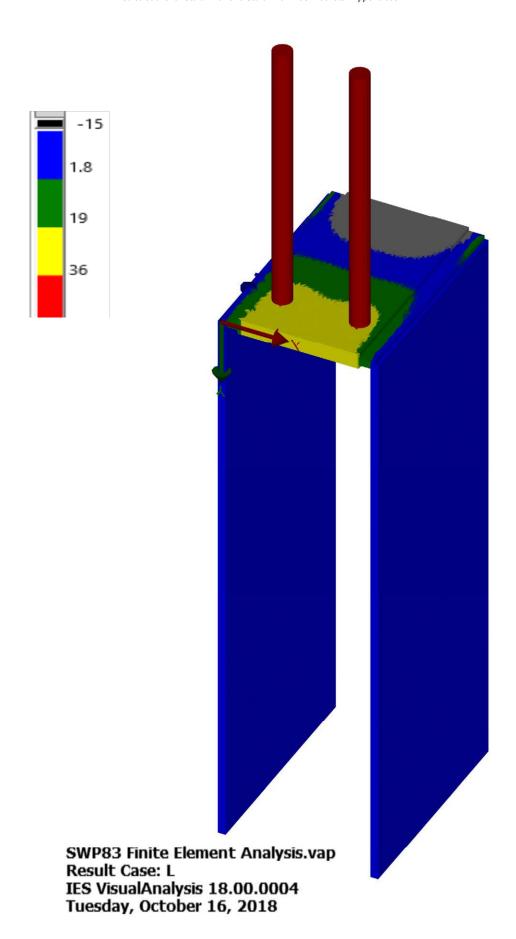


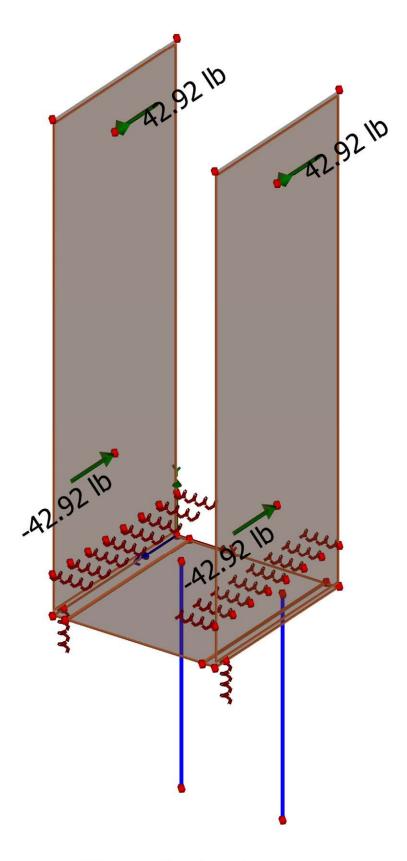




SWP66 Finite Element Analysis.vap Service Case: L IES VisualAnalysis 18.00.0002 Tuesday, June 12, 2018

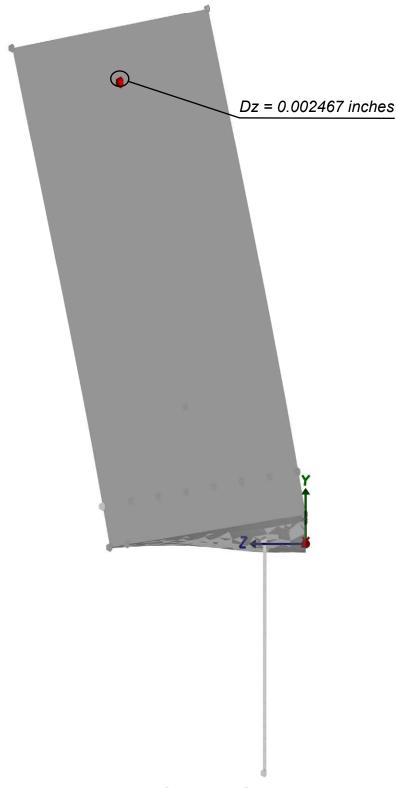



SWP66 Finite Element Analysis.vap Result Case: L IES VisualAnalysis 18.00.0002 Tuesday, June 12, 2018

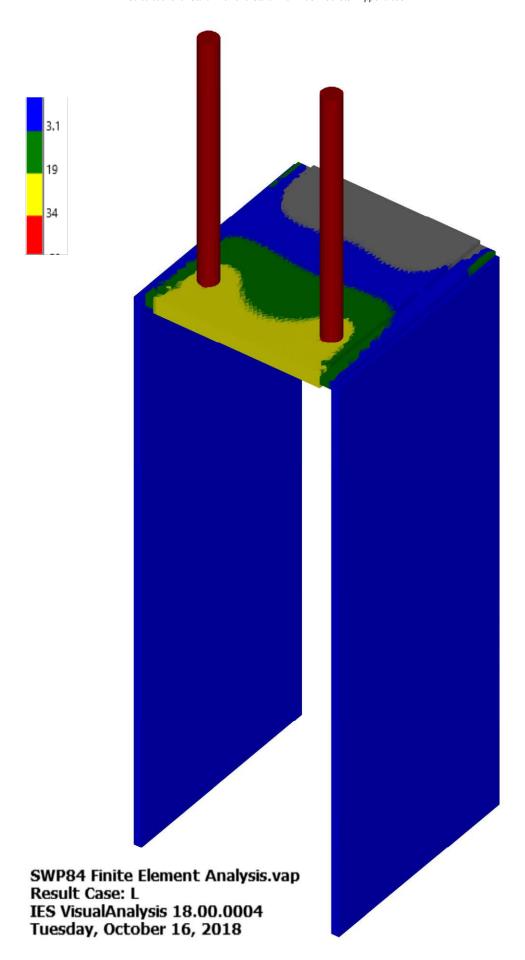


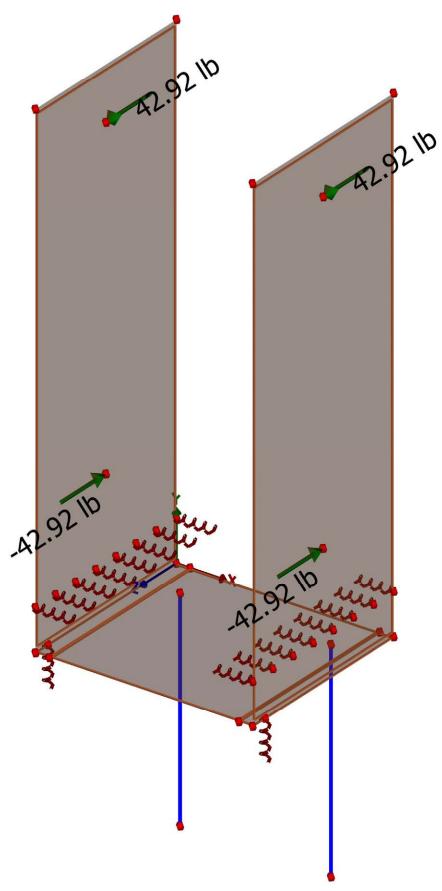




SWP83 Finite Element Analysis.vap Service Case: L IES VisualAnalysis 18.00.0002 Tuesday, June 12, 2018

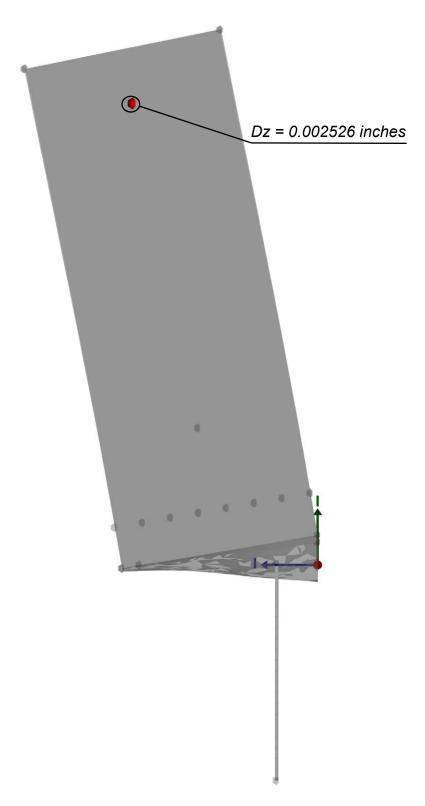



SWP83 Finite Element Analysis.vap Result Case: L IES VisualAnalysis 18.00.0002 Tuesday, June 12, 2018

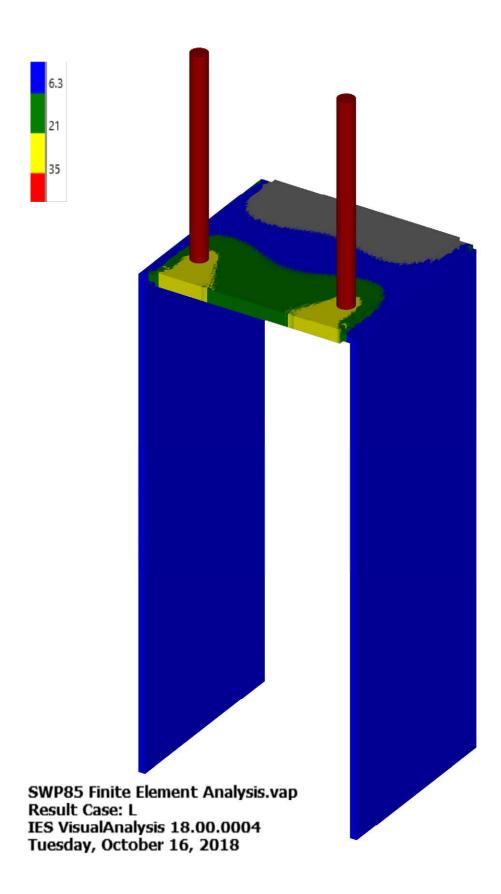


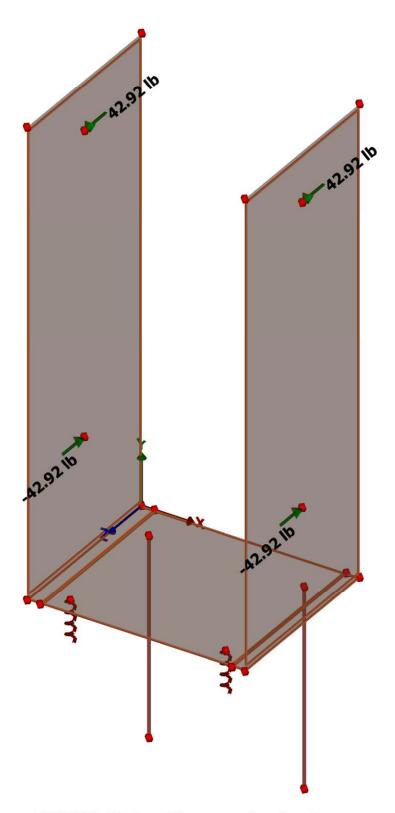




SWP84 Finite Element Analysis.vap Service Case: L IES VisualAnalysis 18.00.0002 Tuesday, June 12, 2018

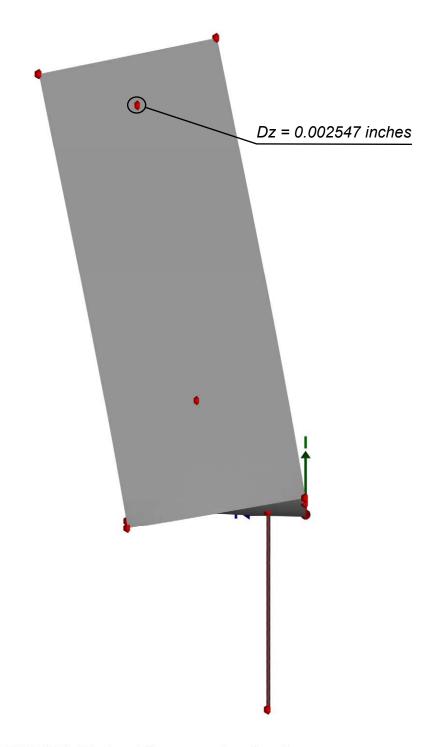



SWP84 Finite Element Analysis.vap Result Case: L IES VisualAnalysis 18.00.0002 Tuesday, June 12, 2018

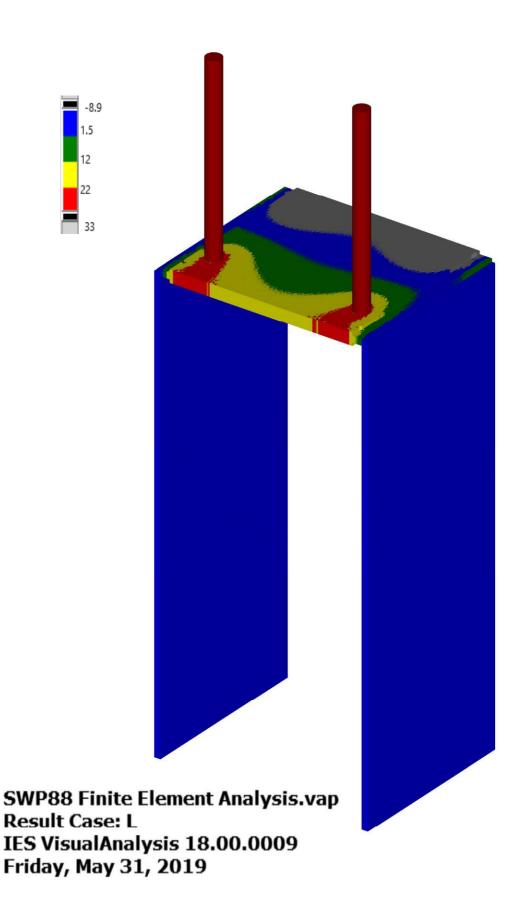



SWP85 Finite Element Analysis.vap Service Case: L IES VisualAnalysis 18.00.0002 Tuesday, June 12, 2018



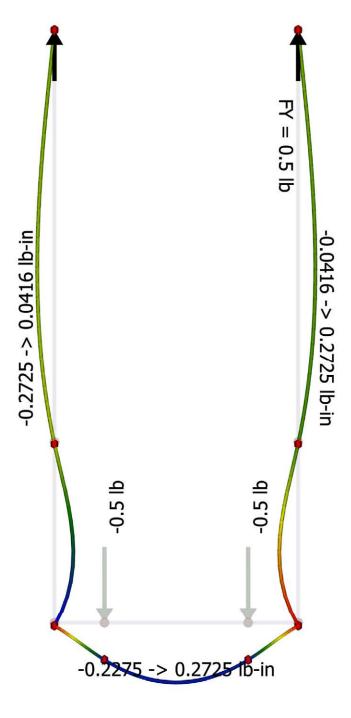

SWP85 Finite Element Analysis.vap Result Case: L IES VisualAnalysis 18.00.0002 Tuesday, June 12, 2018






SWP88 Finite Element Analysis.vap Service Case: L IES VisualAnalysis 18.00.0009 Friday, May 31, 2019




SWP88 Finite Element Analysis.vap Result Case: L IES VisualAnalysis 18.00.0009 Friday, May 31, 2019



## **APPENDIX C**

Structural Models of Sturdi-Wall Plus Brackets To Determine the Maximum Bending Moment (Unity) In Steel Bracket When Bracket is Subjected to Tensile (Uplift) Load

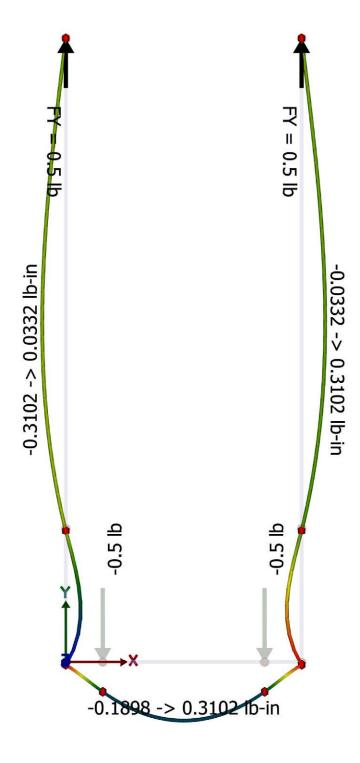
> Visual Analysis by IES, Inc Version 18



SWP63 Uplift.vap Result Case: L IES VisualAnalysis 18.00.0002 Tuesday, June 12, 2018 (SWP46 Similar)

**=**-0.2725

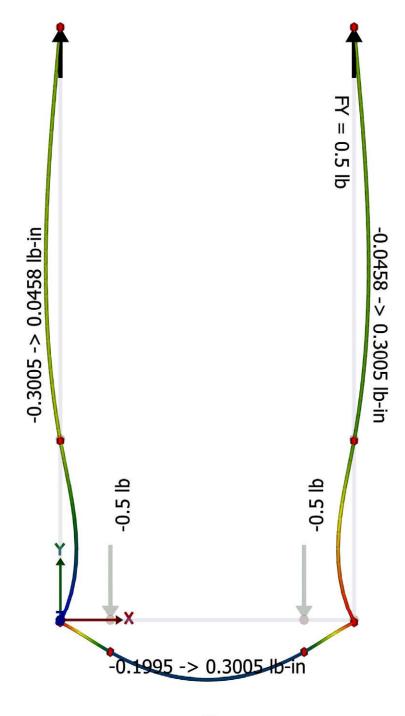
Members: My, moment [lb-in]


0.2725

Timber Tech Engineering, Inc. -0.2725 -0.1362

Appendices, Page 38 of 4

0.1362


TTE #E060-18 (Revision 5) 0.2725



SWP64 Uplift.vap Result Case: L IES VisualAnalysis 18.00.0002 Tuesday, June 12, 2018

Timber Tech Engineering, Inc. -0.3102 Members: My, moment [Ib-in] 0.3102

Appendices, Page 39 of 44 TTE #E060 To (Revision 5) 0.3102



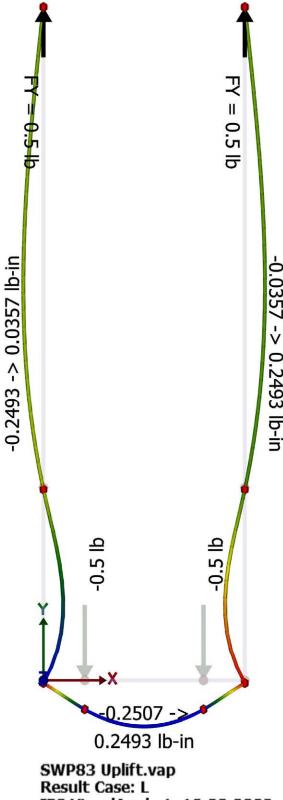
SWP66 Uplift.vap Result Case: L IES VisualAnalysis 18.00.0002 Tuesday, June 12, 2018

Timber Tech Engineering, Inc. -0.3005

Appendices, Page 40 of 44

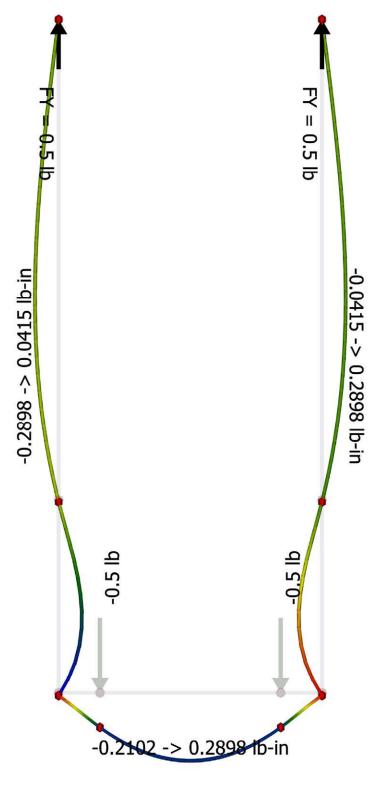
Timber Tech Engineering, Inc. -0.3005

-0.3005

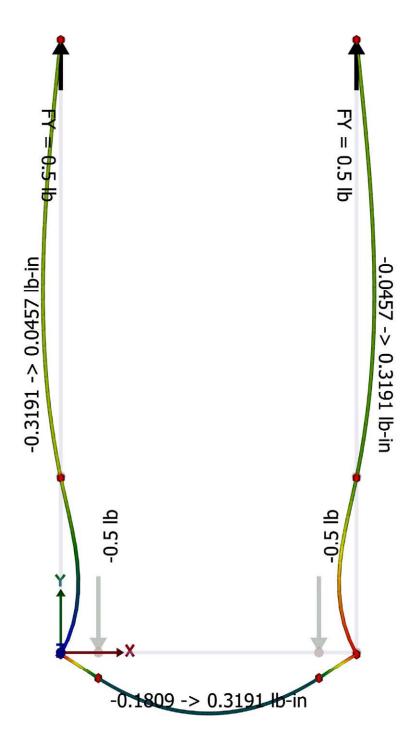

-0.3005

-0.1503

O.3005


TITE #E000-18 (Revision 5)

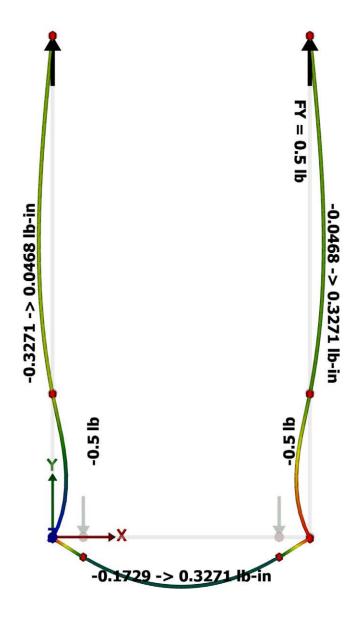
0.3005




IES VisualAnalysis 18.00.0002 Tuesday, June 12, 2018

**=**-0.2507 0.2493 Members: My, moment [lb-in] TE #E060-18 (Revision 5) 0.2493 Timber Tech Engineering, f age 41 of 44 -0.0007 -0.1257 0.1243 -0.2507




SWP84 Uplift.vap Result Case: L IES VisualAnalysis 18.00.0002 Tuesday, June 12, 2018



SWP85 Uplift.vap Result Case: L IES VisualAnalysis 18.00.0002 Tuesday, June 12, 2018

Timber Tech Engineering, Inc. -0.3191 Members : My, moment [lb-in] 0.3191

Timber Tech Engineering, Inc. -0.3191 -0.1595 Appendices, Page 43 of 44 0.1595 0.3191



## SWP88 Uplift.vap Result Case: L IES VisualAnalysis 18.00.0009 Friday, May 31, 2019

